Advanced Materials Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , China.
State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , China.
Inorg Chem. 2019 Apr 1;58(7):4320-4327. doi: 10.1021/acs.inorgchem.8b03421. Epub 2019 Mar 8.
Thermal conductivity is an important physical parameter for the application of nonlinear optical single crystal materials. The underlying science of thermal transport behavior is not well established both experimentally and theoretically. In the present work, we have studied the microscopic picture of lattice thermal conductivity of ZnXP (X = Si, Ge, Sn), chalcopyrite ABC type infrared optical crystals, by using a harmonic and anharmonic lattice dynamic method and phonon Boltzmann transport equation based on first-principle calculations. With the mass of atom X increased, the phonon frequencies and phonon group velocities of ZnXP (X = Si, Ge, Sn) are shown not surprisingly to be decreased. Nevertheless, the phonon lifetime of ZnXP is unexpectedly increased, which is the governing mechanism for the increased thermal conductivity as 12.5 W/(m·k), 31.6 W/(m·k), and 35.4 W/(m·k), for ZnSiP, ZnGeP, and ZnSnP, respectively, at 300 K. The contributions of optical phonons (with the frequency below 150 cm) to the total thermal conductivity are remarkable, reaching 18%, 31%, and 34% for three compounds, due to the significantly increased phonon lifetime in the frequency range 50-150 cm. To explore the physical insights of phonon lifetime and phonon anharmonicity, three-phonon scattering phase space and electronic localization function analysis of the X-P bond are provided. The results show that the covalent nature of X-P bonds is enhanced with the increased mass of atom X = Si, Ge, Sn, which induces the reduction of three-phonon scattering phase space in the frequency range 50-150 cm, leading to the enhancement of the phonon lifetime and thermal conductivity of ZnXP.
导热率是非线性光学单晶材料应用的一个重要物理参数。无论是在实验上还是理论上,热输运行为的基础科学都还没有很好的确立。在目前的工作中,我们通过使用谐波和非谐晶格动力学方法以及基于第一性原理计算的声子玻尔兹曼输运方程,研究了 ZnXP(X = Si、Ge、Sn),黄铜矿 ABC 型红外光学晶体的晶格热导率的微观图像。随着原子 X 的质量增加,ZnXP(X = Si、Ge、Sn)的声子频率和声子群速度不出所料地降低。然而,ZnXP 的声子寿命却出人意料地增加了,这是导致热导率增加的主要机制,在 300 K 时,ZnSiP、ZnGeP 和 ZnSnP 的热导率分别为 12.5 W/(m·k)、31.6 W/(m·k)和 35.4 W/(m·k)。光学声子(频率低于 150 cm)对总热导率的贡献显著,达到 18%、31%和 34%,这是由于在 50-150 cm 的频率范围内声子寿命显著增加。为了探索声子寿命和声子非谐性的物理见解,我们提供了 X-P 键的三声子散射相空间和电子局域化函数分析。结果表明,随着原子 X = Si、Ge、Sn 质量的增加,X-P 键的共价性质增强,这导致在 50-150 cm 的频率范围内三声子散射相空间减少,从而增强了 ZnXP 的声子寿命和热导率。