Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California Davis, Davis, California, United States of America.
San Diego Supercomputer Center (SDSC), University of California, San Diego, La Jolla, California, United States of America.
PLoS Comput Biol. 2019 Mar 8;15(3):e1006856. doi: 10.1371/journal.pcbi.1006856. eCollection 2019 Mar.
Multi-scale computational modeling is a major branch of computational biology as evidenced by the US federal interagency Multi-Scale Modeling Consortium and major international projects. It invariably involves specific and detailed sequences of data analysis and simulation, often with multiple tools and datasets, and the community recognizes improved modularity, reuse, reproducibility, portability and scalability as critical unmet needs in this area. Scientific workflows are a well-recognized strategy for addressing these needs in scientific computing. While there are good examples if the use of scientific workflows in bioinformatics, medical informatics, biomedical imaging and data analysis, there are fewer examples in multi-scale computational modeling in general and cardiac electrophysiology in particular. Cardiac electrophysiology simulation is a mature area of multi-scale computational biology that serves as an excellent use case for developing and testing new scientific workflows. In this article, we develop, describe and test a computational workflow that serves as a proof of concept of a platform for the robust integration and implementation of a reusable and reproducible multi-scale cardiac cell and tissue model that is expandable, modular and portable. The workflow described leverages Python and Kepler-Python actor for plotting and pre/post-processing. During all stages of the workflow design, we rely on freely available open-source tools, to make our workflow freely usable by scientists.
多尺度计算建模是计算生物学的一个主要分支,这一点在美国联邦跨机构多尺度建模联盟和主要的国际项目中得到了证明。它通常涉及特定和详细的数据分析和模拟序列,通常涉及多个工具和数据集,并且该领域的社区认识到提高模块化、重用性、可重复性、可移植性和可扩展性是未满足的关键需求。科学工作流是解决科学计算中这些需求的一种公认策略。虽然在生物信息学、医学信息学、生物医学成像和数据分析中都有很好的科学工作流应用的例子,但在多尺度计算建模中,特别是在心脏电生理学中,这样的例子较少。心脏电生理学模拟是多尺度计算生物学的一个成熟领域,是开发和测试新科学工作流的极好用例。在本文中,我们开发、描述和测试了一种计算工作流,作为用于稳健集成和实现可重复使用和可再现的可扩展、模块化和可移植的多尺度心脏细胞和组织模型的平台的概念验证。所描述的工作流利用 Python 和 Kepler-Python 参与者进行绘图和预处理/后处理。在工作流设计的所有阶段,我们都依赖于免费提供的开源工具,以使我们的工作流可供科学家免费使用。