Suppr超能文献

基于人群的机制建模能够对不同细胞类型的药物反应进行定量预测。

Population-based mechanistic modeling allows for quantitative predictions of drug responses across cell types.

作者信息

Gong Jingqi Q X, Sobie Eric A

机构信息

Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA.

出版信息

NPJ Syst Biol Appl. 2018 Feb 24;4:11. doi: 10.1038/s41540-018-0047-2. eCollection 2018.

Abstract

Quantitative mismatches between human physiology and experimental models can be problematic for the development of effective therapeutics. When the effects of drugs on human adult cardiac electrophysiology are of interest, phenotypic differences with animal cells, and more recently stem cell-derived models, can present serious limitations. We addressed this issue through a combination of mechanistic mathematical modeling and statistical analyses. Physiological metrics were simulated in heterogeneous populations of models describing cardiac myocytes from adult ventricles and those derived from induced pluripotent stem cells (iPSC-CMs). These simulated measures were used to construct a cross-cell type regression model that predicts adult myocyte drug responses from iPSC-CM behaviors. We found that (1) quantitatively accurate predictions of responses to selective or non-selective ion channel blocking drugs could be generated based on iPSC-CM responses under multiple experimental conditions; (2) altering extracellular ion concentrations is an effective experimental perturbation for improving the model's predictive strength; (3) the method can be extended to predict and contrast drug responses in diseased as well as healthy cells, indicating a broader application of the concept. This cross-cell type model can be of great value in drug development, and the approach, which can be applied to other fields, represents an important strategy for overcoming experimental model limitations.

摘要

人体生理学与实验模型之间的定量不匹配可能会给有效治疗方法的开发带来问题。当药物对人类成年心脏电生理学的影响受到关注时,与动物细胞以及最近的干细胞衍生模型的表型差异可能会带来严重限制。我们通过机械数学建模和统计分析相结合的方法解决了这个问题。在描述成年心室心肌细胞和诱导多能干细胞衍生心肌细胞(iPSC-CMs)的异质模型群体中模拟了生理指标。这些模拟测量用于构建一个跨细胞类型回归模型,该模型根据iPSC-CM行为预测成年心肌细胞的药物反应。我们发现:(1)基于多种实验条件下的iPSC-CM反应,可以生成对选择性或非选择性离子通道阻断药物反应的定量准确预测;(2)改变细胞外离子浓度是提高模型预测强度的有效实验扰动;(3)该方法可以扩展到预测和对比患病细胞以及健康细胞中的药物反应,表明该概念具有更广泛的应用。这种跨细胞类型模型在药物开发中可能具有很大价值,并且该方法可应用于其他领域,代表了克服实验模型局限性的重要策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac2/5825396/d8802e8f255d/41540_2018_47_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验