Suppr超能文献

一种基于概率递归神经网络的方法,可从背角神经元的多节段记录中解码后肢运动学。

A probabilistic recurrent neural network for decoding hind limb kinematics from multi-segment recordings of the dorsal horn neurons.

机构信息

Department of Biomedical Engineering, Iran Neural Technology Research Centre, Iran University of Science and Technology (IUST), Tehran, Iran.

出版信息

J Neural Eng. 2019 Jun;16(3):036023. doi: 10.1088/1741-2552/ab0e51. Epub 2019 Mar 8.

Abstract

OBJECTIVE

Providing accurate and robust estimates of limb kinematics from recorded neural activities is prominent in closed-loop control of functional electrical stimulation (FES). A major issue in providing accurate decoding the limb kinematics is the decoding model. The primary goal of this study is to develop a decoding approach to model the dynamic interactions of neural systems for accurate decoding. Another critical issue is to find reliable recording sites. Up to now, neural recordings from spinal neural activities were investigated. In this paper, the neural recordings from different vertebrae in decoding limb kinematics are investigated.

APPROACH

In the current study, a new generative probabilistic model with explicit considering the joint density is developed. Then, an adaptive discriminative learning algorithm is proposed for learning the model. It will be shown that the proposed generative process can be implemented by a recurrent neural network (RNN) with specific structure. We record the neural activities from dorsal horn neurons by using three electrodes placed in the L4, L5, and L6 vertebrae in anesthetized cats.

MAIN RESULTS

Information theoretic analysis on single-joint movement and multi-segment recordings implies the rostrocaudal distribution of kinematic information. It is demonstrated that during hip movement, best decoding performance is achieved by L4 recordings. For knee and ankle movements, best decodings are achieved by L5, and L6 recordings respectively. It is also shown that the decoding accuracy using multi-segment recordings outperforms decoding accuracy obtained by single-segment recording in multi-joint movement. The results also confirm the superiority of the proposed probabilistic recurrent neural network (PRNN) over the conventional recurrent neural network and Kalman filter ([Formula: see text]).

SIGNIFICANCE

Multi-segment recordings from dorsal horn neurons as well as the proposed probabilistic recurrent network model provide a promising approach for robust and accurate decoding limb kinematics.

摘要

目的

从记录的神经活动中提供准确、稳健的肢体运动学估计是功能电刺激 (FES) 闭环控制中的突出问题。提供准确解码肢体运动学的主要问题是解码模型。本研究的主要目标是开发一种解码方法来模拟神经系统的动态相互作用,以实现准确解码。另一个关键问题是找到可靠的记录部位。到目前为止,已经研究了来自脊髓神经活动的神经记录。在本文中,研究了从不同椎骨记录神经活动来解码肢体运动学。

方法

在当前研究中,开发了一种新的生成概率模型,该模型明确考虑了关节密度。然后,提出了一种自适应判别学习算法来学习模型。将表明,所提出的生成过程可以通过具有特定结构的递归神经网络 (RNN) 来实现。我们通过在麻醉猫的 L4、L5 和 L6 椎骨上放置三个电极来记录背角神经元的神经活动。

主要结果

对单关节运动和多节段记录的信息论分析表明运动学信息的头尾分布。结果表明,在髋关节运动期间,L4 记录的解码性能最佳。对于膝关节和踝关节运动,L5 和 L6 记录的解码效果最佳。还表明,多节段记录的解码精度优于多关节运动中单节段记录的解码精度。结果还证实了概率递归神经网络 (PRNN) 优于传统递归神经网络和卡尔曼滤波器 ([公式:见正文])。

意义

背角神经元的多节段记录以及所提出的概率递归网络模型为稳健准确地解码肢体运动学提供了一种很有前途的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验