IBM Research, Hartree Centre, Daresbury WA4 4AD, United Kingdom.
J Chem Phys. 2019 Mar 7;150(9):094506. doi: 10.1063/1.5087471.
We investigate the microscopic origin of water's anomalies by inspecting the hydrogen bond network (HBN) and the spatial organization of low-density-liquid (LDL) like and high-density-liquid (HDL) like environments. Specifically, we simulate-via classical molecular dynamics simulations-the isobaric cooling of a sample composed of 512 water molecules from ambient to deeply undercooled conditions at three pressures, namely, 1 bar, 400 bars, and 1000 bars. In correspondence with the Widom line (WL), (i) the HDL-like dominating cluster undergoes fragmentation caused by the percolation of LDL-like aggregates following a spinodal-like kinetics; (ii) such fragmentation always occurs at a "critical" concentration of ∼20%-30% in LDL; (iii) the HBN within LDL-like environments is characterized by an equal number of pentagonal and hexagonal rings that create a state of maximal frustration between a configuration that promotes crystallization (hexagonal ring) and a configuration that hinders it (pentagonal ring); (iv) the spatial organization of HDL-like environments shows a marked variation. Moreover, the inspection of the global symmetry shows that the intermediate-range order decreases in correspondence with the WL and such a decrease becomes more pronounced upon increasing the pressure, hence supporting the hypothesis of a liquid-liquid critical point. Our results reveal and rationalize the complex microscopic origin of water's anomalies as the cooperative effect of several factors acting synergistically. Beyond implications for water, our findings may be extended to other materials displaying anomalous behaviours.
我们通过检查氢键网络(HBN)和低密度液体(LDL)样和高密度液体(HDL)样环境的空间组织,来研究水的异常的微观起源。具体来说,我们通过经典分子动力学模拟,模拟了由 512 个水分子组成的样品在三种压力下(即 1 巴、400 巴和 1000 巴)从环境到深过冷条件的等压冷却。对应于 Widom 线(WL),(i)HDL 样主导簇由于 LDL 样聚集体的渗透而发生碎片化,遵循旋节线动力学;(ii)这种碎片化总是在 LDL 中约 20%-30%的“临界”浓度下发生;(iii)LDL 样环境中的 HBN 具有相同数量的五边形和六边形环,在促进结晶(六边形环)和阻碍结晶(五边形环)的构型之间造成最大的挫折状态;(iv)HDL 样环境的空间组织显示出明显的变化。此外,对全局对称性的检查表明,中间范围有序度随着 WL 而降低,并且随着压力的增加,这种降低变得更加明显,从而支持存在液-液相临界点的假设。我们的结果揭示并合理化了水异常的复杂微观起源,这是几个协同作用的因素的协同作用。除了对水的影响外,我们的发现还可以扩展到其他表现出异常行为的材料。