Renal-Electrolyte and Hypertension Division, Department of Medicine.
Department of Genetics, and.
J Am Soc Nephrol. 2019 Apr;30(4):594-609. doi: 10.1681/ASN.2018070687. Epub 2019 Mar 8.
Cytosine methylation of regulatory regions, such as promoters and enhancers, plays a key role in regulating gene expression, however, its role in kidney development has not been analyzed.
To identify functionally important epigenome-modifying enzymes and genome regions where methylation modifications are functionally important for kidney development, we performed genome-wide methylation analysis, expression profiling, and systematic genetic targeting of DNA methyltransferases (, , and ) and Ten-eleven translocation methylcytosine hydroxylases () in nephron progenitor cells () in mice.
Genome-wide methylome analysis indicated dynamic changes on promoters and enhancers during development. , , and mice showed no significant structural or functional renal abnormalities. In contrast, mice died within 24 hours of birth, from a severe kidney developmental defect. Genome-wide methylation analysis indicated a marked loss of methylation of transposable elements. RNA sequencing detected endogenous retroviral transcripts. Expression of intracellular viral sensing pathways (RIG-I), early embryonic, nonrenal lineage genes and increased cell death contributed to the phenotype development. In podocytes, loss of , , , or did not lead to functional or structural differences at baseline or after toxic injury.
Genome-wide cytosine methylation and gene expression profiling showed that by silencing embryonic, nonrenal lineage genes and transposable elements, DNMT1-mediated cytosine methylation is essential for kidney development.
调控区域(如启动子和增强子)的胞嘧啶甲基化在调节基因表达中起着关键作用,但它在肾脏发育中的作用尚未被分析。
为了鉴定功能重要的表观遗传修饰酶和基因组区域,我们在小鼠肾祖细胞中进行了全基因组甲基化分析、表达谱分析以及 DNA 甲基转移酶(DNMT1、DNMT3A 和 DNMT3B)和 Ten-eleven 易位甲基胞嘧啶羟化酶(TET1、TET2 和 TET3)的系统遗传靶向。
全基因组甲基组分析表明,在发育过程中启动子和增强子上存在动态变化。DNMT1、DNMT3A 和 DNMT3B 基因敲除小鼠没有明显的结构或功能肾脏异常。相比之下,DNMT1 基因敲除小鼠在出生后 24 小时内死亡,表现出严重的肾脏发育缺陷。全基因组甲基化分析表明转座元件的甲基化明显丢失。RNA 测序检测到内源性逆转录病毒转录本。细胞内病毒感应途径(RIG-I)、早期胚胎、非肾谱系基因的表达和细胞死亡增加导致了表型的发展。在足细胞中,缺失 DNMT1、DNMT3A、DNMT3B 或 TET1、TET2 或 TET3 并没有导致在基线或毒性损伤后出现功能或结构上的差异。
全基因组胞嘧啶甲基化和基因表达谱分析表明,通过沉默胚胎、非肾谱系基因和转座元件,DNMT1 介导的胞嘧啶甲基化对于肾脏发育是必不可少的。