Suppr超能文献

种群增长与多次合并 coalescent 之间的稳健模型选择。

Robust model selection between population growth and multiple merger coalescents.

机构信息

Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.

Fakultät für Mathematik, Ruhr Universität Bochum, Universitätstraße 150, Bochum 44780, Germany.

出版信息

Math Biosci. 2019 May;311:1-12. doi: 10.1016/j.mbs.2019.03.004. Epub 2019 Mar 6.

Abstract

We study the effect of biological confounders on the model selection problem between Kingman coalescents with population growth, and Ξ-coalescents involving simultaneous multiple mergers. We use a low dimensional, computationally tractable summary statistic, dubbed the singleton-tail statistic, to carry out approximate likelihood ratio tests between these model classes. The singleton-tail statistic has been shown to distinguish between them with high power in the simple setting of neutrally evolving, panmictic populations without recombination. We extend this work by showing that cryptic recombination and selection do not diminish the power of the test, but that misspecifying population structure does. Furthermore, we demonstrate that the singleton-tail statistic can also solve the more challenging model selection problem between multiple mergers due to selective sweeps, and multiple mergers due to high fecundity with moderate power of up to 30%.

摘要

我们研究了生物混杂因素对 Kingman 融合与群体增长模型选择问题,以及涉及同时多次合并的 Ξ-融合模型选择问题的影响。我们使用一个低维、计算上易于处理的摘要统计量,称为单尾统计量,对这些模型类别进行近似似然比检验。单尾统计量已被证明在无重组的中性进化、随机交配群体的简单设置中,具有很高的区分能力。我们通过证明隐性重组和选择不会降低检验的功效,但错误指定群体结构会降低检验的功效,扩展了这一工作。此外,我们还证明,单尾统计量也可以解决由于选择性清除导致的多次合并和由于高繁殖力导致的多次合并这一更具挑战性的模型选择问题,其功效高达 30%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验