Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.
Fakultät für Mathematik, Ruhr Universität Bochum, Universitätstraße 150, Bochum 44780, Germany.
Math Biosci. 2019 May;311:1-12. doi: 10.1016/j.mbs.2019.03.004. Epub 2019 Mar 6.
We study the effect of biological confounders on the model selection problem between Kingman coalescents with population growth, and Ξ-coalescents involving simultaneous multiple mergers. We use a low dimensional, computationally tractable summary statistic, dubbed the singleton-tail statistic, to carry out approximate likelihood ratio tests between these model classes. The singleton-tail statistic has been shown to distinguish between them with high power in the simple setting of neutrally evolving, panmictic populations without recombination. We extend this work by showing that cryptic recombination and selection do not diminish the power of the test, but that misspecifying population structure does. Furthermore, we demonstrate that the singleton-tail statistic can also solve the more challenging model selection problem between multiple mergers due to selective sweeps, and multiple mergers due to high fecundity with moderate power of up to 30%.
我们研究了生物混杂因素对 Kingman 融合与群体增长模型选择问题,以及涉及同时多次合并的 Ξ-融合模型选择问题的影响。我们使用一个低维、计算上易于处理的摘要统计量,称为单尾统计量,对这些模型类别进行近似似然比检验。单尾统计量已被证明在无重组的中性进化、随机交配群体的简单设置中,具有很高的区分能力。我们通过证明隐性重组和选择不会降低检验的功效,但错误指定群体结构会降低检验的功效,扩展了这一工作。此外,我们还证明,单尾统计量也可以解决由于选择性清除导致的多次合并和由于高繁殖力导致的多次合并这一更具挑战性的模型选择问题,其功效高达 30%。