Suppr超能文献

具有捕食者密度依赖死亡率和猎物强阿利效应的双延迟捕食-食饵系统中的超临界和亚临界霍普夫分岔

Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey.

作者信息

Banerjee Jeet, Sasmal Sourav Kumar, Layek Ritwik Kumar

机构信息

Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa 252-5258, Japan.

出版信息

Biosystems. 2019 Jun;180:19-37. doi: 10.1016/j.biosystems.2019.02.011. Epub 2019 Mar 7.

Abstract

One of the possible ways to visualize the effect of intra- and inter-species synergistic and antagonistic interactions in a natural ecosystem is the detailed analysis of the underlying prey-predator model, and the subsequent analytical findings may provide a definite justification towards the species coexistence, which often maintains biodiversity in nature. Here, our central motivation is to understand the combined effect of the Allee threshold and intra-species competition on the evolution of interacting species, which often experience delays in evolution due to its complex ecological and physiological processes. Therefore, in the present paper, we extensively analyze the stability of a two-delayed prey-predator system in the presence of strong Allee effects in prey and intra-species competition in predator. In addition, we capture the reality of time difference between the lifespan of the prey and predator through proper nondimensionalization. The two delays in the proposed retarded system correspond to the intra-specific competition-induced feedback time lag to the prey and predator gestation period. In the absence of intra-predator competition, the present dynamics unveils supercritical Hopf-bifurcation around the interior point of coexistence which is in-line with the existing literature. It is noteworthy to mention that the proposed Allee system exhibits subcritical Hopf-bifurcation in the presence of intra-species competition in predator. We confirm the occurrence of both supercritical and subcritical Hopf-bifurcations via calculating the direction and stability of Hopf-bifurcating periodic solutions using the normal form method and the center manifold theory. Moreover, the suggested delayed schema presents supercritical Hopf-bifurcation at the boundary steady-state, where the population density of prey exists at its maximum carrying capacity. We recognize the bistability between extinction and coexistence, and the proposed model also exhibits the 'chaotic concurrence between prey and predator,' which happens through the period-doubling bifurcation. The existence of chaos is validated using the estimated power spectrum and the spectrum of Lyapunov exponents. The primary finding of this paper is that Allee threshold induces the capability to the density-dependent death rate of predator towards changing the stability of 'oscillatory coexistence between prey and predator.'

摘要

在自然生态系统中,可视化物种内和物种间协同与拮抗相互作用影响的一种可能方法是对潜在的捕食者 - 猎物模型进行详细分析,随后的分析结果可能为物种共存提供明确的依据,而物种共存通常维持着自然界的生物多样性。在此,我们的核心动机是理解阿利效应阈值和物种内竞争对相互作用物种进化的综合影响,这些物种由于其复杂的生态和生理过程,在进化过程中常常会经历延迟。因此,在本文中,我们广泛分析了一个具有两个时滞的捕食者 - 猎物系统在猎物存在强阿利效应和捕食者存在物种内竞争情况下的稳定性。此外,我们通过适当的无量纲化来体现猎物和捕食者寿命之间的时间差这一现实情况。所提出的时滞系统中的两个时滞分别对应物种内竞争引起的猎物反馈时间滞后和捕食者妊娠期。在没有捕食者内部竞争的情况下,当前的动态揭示了围绕共存内点的超临界霍普夫分岔,这与现有文献一致。值得一提的是,所提出的阿利系统在捕食者存在物种内竞争时表现出亚临界霍普夫分岔。我们通过使用范式方法和中心流形理论计算霍普夫分岔周期解的方向和稳定性,证实了超临界和亚临界霍普夫分岔的发生。此外,所提出的时滞模式在边界稳态处呈现超临界霍普夫分岔,此时猎物的种群密度处于其最大承载能力。我们认识到灭绝和共存之间的双稳性,并且所提出的模型还表现出“猎物和捕食者之间的混沌并发”,这是通过倍周期分岔发生的。使用估计的功率谱和李雅普诺夫指数谱验证了混沌的存在。本文的主要发现是,阿利效应阈值赋予捕食者密度依赖性死亡率改变“猎物和捕食者振荡共存”稳定性的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验