氧化铁纳米颗粒通过激活 Toll 样受体 4 信号通路促进巨噬细胞自噬和炎症反应。

Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling.

机构信息

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.

Department of Colorectal & Anal Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China.

出版信息

Biomaterials. 2019 May;203:23-30. doi: 10.1016/j.biomaterials.2019.02.026. Epub 2019 Feb 28.

Abstract

Nanoparticle-induced autophagy is crucial for its metabolism, cytotoxicity and therapy potency, but little is known about how the host immune system would respond to it. In this study, we demonstrated that two clinically used superparamagnetic iron oxide nanoparticles (SPIONs) specifically induced macrophage autophagy through activation of TLR4, followed by phosphorylation of p38 and nucleus translocation of Nrf2, leading to upregulation of p62/SQSTM1 and macrophage scavenger receptor SR-AI mRNA expression. Overexpressed p62 conjugated with LC3 to form aggresome-like induced structures (ALIS) and then fused with SPIONs containing endosomes and lysosomes to form autolysosomes for degradation of endocytosed nanoparticles. More importantly, SPIONs also could promote macrophage autophagy in mouse liver which is their imaging target. We also discovered that SPIONs could stimulate the expression of inflammatory cytokines through activation of TLR4 signaling in macrophage. In general, our findings indicate that SPIONs would interact with TLR4 on the macrophage membrane and trigger its downstream signaling pathway, independent of the classic autophagic p62 reduction pathway. The observed autophagy and induced inflammatory responses in macrophages provide unique and novel perspectives in optimizing imaging/therapy nanoparticle performance in addition to analysis by traditional biochemical evaluation methods. It also enriches our understanding of NP/macrophage interaction mechanisms in reticular endothelial system (RES) organs.

摘要

纳米颗粒诱导的自噬对于其代谢、细胞毒性和治疗效力至关重要,但人们对宿主免疫系统如何对此作出反应知之甚少。在本研究中,我们证明两种临床应用的超顺磁性氧化铁纳米颗粒(SPIONs)通过激活 TLR4 特异性诱导巨噬细胞自噬,随后 p38 的磷酸化和 Nrf2 的核易位,导致 p62/SQSTM1 和巨噬细胞清道夫受体 SR-AI mRNA 表达的上调。过表达的 p62 与 LC3 结合形成类似聚集诱导结构(ALIS),然后与含有内体和溶酶体的 SPIONs 融合形成自溶酶体,以降解内吞的纳米颗粒。更重要的是,SPIONs 还可以在其成像靶点小鼠肝脏中促进巨噬细胞自噬。我们还发现,SPIONs 通过激活巨噬细胞中的 TLR4 信号通路刺激炎症细胞因子的表达。总的来说,我们的研究结果表明,SPIONs 会与巨噬细胞膜上的 TLR4 相互作用,并触发其下游信号通路,而不依赖于经典自噬 p62 减少途径。观察到的巨噬细胞自噬和诱导的炎症反应为优化成像/治疗纳米颗粒性能提供了独特而新颖的视角,除了传统的生化评估方法外。它还丰富了我们对网状内皮系统(RES)器官中 NP/巨噬细胞相互作用机制的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索