文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于基于热疗的治疗和可控药物递送的磁性纳米材料。

Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

作者信息

Chen Yu, Sun Haifu, Li Yonggang, Han Xixi, Yang Yuqing, Chen Zheng, Zhao Xuequan, Qian Yuchen, Liu Xishui, Zhou Feng, Bai Jiaxiang, Qiao Yusen

机构信息

Department of Orthopaedics, The First Affiliated Hospital of Soochow University Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.

School of Clinical Medicine, Capital Medical University, Beijing, 100069, China.

出版信息

Bioact Mater. 2025 Jul 26;53:591-629. doi: 10.1016/j.bioactmat.2025.07.033. eCollection 2025 Nov.


DOI:10.1016/j.bioactmat.2025.07.033
PMID:40761549
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12320187/
Abstract

As an innovative physiotherapeutic approach, magnetic hyperthermia therapy (MHT) has unique advantages including minimal invasiveness, precise temperature control, and deep tissue penetration capabilities. It offers unparalleled control over heating areas and temperatures, boasts high efficiency, and results in excellent tissue penetration, while remaining independent of biological tissues. With vast potential in biomedical applications ranging from antitumor therapy to thrombus dissolution, MHT harnesses magnetic nanoparticles (MNPs) to convert magnetic energy into thermal energy under an alternating magnetic field (AMF), thereby achieving therapeutic effects. Advanced magnetic nanocomposite platforms based on magnetic nanoparticles can avoid various risks associated with traditional tools, achieving precise, on-demand, or continuous targeted drug delivery and release through multiple approaches. The potential clinical applications of magnetic hyperthermia therapy are being progressively developed. The present article presents an exhaustive review of the research progress in magnetic hyperthermia therapy. Initially, the overall landscape of MHT was outlined, including physical heat generation mechanisms, types of magnetic nanoparticles and conductive nonmagnetic materials, strategies to increase the thermal efficiency of MNPs, and experimental evidence and research progress on "hot-spot" effects. This review has focused on biomedical applications and targeted drug delivery of innovative combination therapy strategies based on MHT. The progress of clinical trials on MNPs-mediated MHT (MNPs-MHT) is summarized below. Furthermore, the limitations, major challenges and prospects in the clinical translation of MHT are discussed. The objective of this work is to provide a panoramic view of biomedical applications and targeted drug delivery of MHT, which can potentially guide researchers and facilitate the successful implementation of advanced MNPs-MHT systems in the future.

摘要

作为一种创新的物理治疗方法,磁热疗(MHT)具有独特的优势,包括微创性、精确的温度控制和深部组织穿透能力。它在加热区域和温度控制方面具有无与伦比的优势,效率高,组织穿透性好,且不受生物组织的影响。磁热疗在从抗肿瘤治疗到血栓溶解等生物医学应用中具有巨大潜力,它利用磁性纳米颗粒(MNPs)在交变磁场(AMF)下将磁能转化为热能,从而实现治疗效果。基于磁性纳米颗粒的先进磁性纳米复合平台可以避免与传统工具相关的各种风险,通过多种方法实现精确、按需或连续的靶向药物递送和释放。磁热疗的潜在临床应用正在逐步发展。本文对磁热疗的研究进展进行了详尽综述。首先,概述了磁热疗的整体概况,包括物理产热机制、磁性纳米颗粒和导电非磁性材料的类型、提高磁性纳米颗粒热效率的策略以及“热点”效应的实验证据和研究进展。本综述重点关注基于磁热疗的创新联合治疗策略的生物医学应用和靶向药物递送。下面总结了磁性纳米颗粒介导的磁热疗(MNPs-MHT)的临床试验进展。此外,还讨论了磁热疗临床转化中的局限性、主要挑战和前景。这项工作的目的是全面介绍磁热疗的生物医学应用和靶向药物递送,这可能会指导研究人员,并有助于未来成功实施先进的MNPs-MHT系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/decef8e62ae6/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/4be87aeb408e/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/7ccf7a9cf1e4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/fcec56fa9487/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/387da9051b37/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/b4883d789fdc/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/b1a02dfa2c16/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/bd3cbafeb813/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/0bff5c0b2a19/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/d5b4ee4d232b/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/79902ea66f5c/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/3de579f3cd5c/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/decef8e62ae6/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/4be87aeb408e/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/7ccf7a9cf1e4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/fcec56fa9487/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/387da9051b37/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/b4883d789fdc/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/b1a02dfa2c16/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/bd3cbafeb813/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/0bff5c0b2a19/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/d5b4ee4d232b/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/79902ea66f5c/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/3de579f3cd5c/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcd/12320187/decef8e62ae6/gr11.jpg

相似文献

[1]
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

Bioact Mater. 2025-7-26

[2]
Magnetic hyperthermia in oncology: Nanomaterials-driven combinatorial strategies for synergistic therapeutic gains.

Mater Today Bio. 2025-7-9

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Nanoparticles based image-guided thermal therapy and temperature feedback.

J Mater Chem B. 2024-12-18

[5]
Design and performance evaluation of magnetic hyperthermia instrument with embedded PI control.

Electromagn Biol Med. 2025-6-29

[6]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[7]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[8]
Short-Term Memory Impairment

2025-1

[9]
Metal Nanoparticles for Simultaneous Use in AC Magnetic Field Hyperthermia and Magnetic Resonance Imaging.

J Biomed Mater Res A. 2025-1

[10]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

引用本文的文献

[1]
Magnetic hyperthermia-based therapies for cancer targeting: current progress and future perspectives.

Med Oncol. 2025-8-28

本文引用的文献

[1]
Nonmetallic magnetic hyperthermia and chemo-immunotherapy of tumors.

Mater Today Bio. 2025-5-26

[2]
Mesoporous FeO Nanoparticles Loaded with IR-820 for Antibacterial Activity via Magnetic Hyperthermia Combined with Photodynamic Therapy.

Adv Healthc Mater. 2025-7

[3]
Antibody polymer drug conjugates with increased drug to antibody ratio: CD38-targeting nanomedicines for innovative therapy of relapsed lymphomas.

J Control Release. 2025-8-10

[4]
Plasminogen activation and plasmin activity are not required to prevent venous thrombosis/thromboembolism.

Blood. 2025-5-22

[5]
Precise size control of superparamagnetic FeO nanoparticles for liver cancer diagnosis and magnetic hyperthermia therapy.

Colloids Surf B Biointerfaces. 2025-9

[6]
From Bimetallic Oleates to Customized Biomedical Nanoplatforms: A Versatile Approach for the Multidoping of Ferrites.

ACS Appl Mater Interfaces. 2025-5-21

[7]
Advances in photothermal therapy for cancer and bacterial cells ablation using various nanomaterials.

Adv Colloid Interface Sci. 2025-8

[8]
Magnetically driven biohybrid blood hydrogel fibres for personalized intracranial tumour therapy under fluoroscopic tracking.

Nat Biomed Eng. 2025-5-1

[9]
Stable and Highly Steerable Magnetic Nanorobots Demonstrate Therapeutical Functionality in Crowded Biological Media.

ACS Nano. 2025-5-13

[10]
Chitosan/agarose-encapsulated oleic acid-coated magnetite nanoparticles as a chemotherapeutic-loaded scaffold for drug delivery: Physico-chemical and in vitro biological characteristics.

Int J Biol Macromol. 2025-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索