Suppr超能文献

基于计算机测试中经典项目特征与项目反应时间之间的关系。

The relationship between classical item characteristics and item response time on computer-based testing.

作者信息

Chae Yoo-Mi, Park Seok Gun, Park Ilyong

机构信息

Department of Medical Education, Dankook University College of Medicine, Cheonan, Korea.

Department of Nuclear Medicine, Dankook University College of Medicine, Cheonan, Korea.

出版信息

Korean J Med Educ. 2019 Mar;31(1):1-9. doi: 10.3946/kjme.2019.113. Epub 2019 Mar 1.

Abstract

PURPOSE

This study investigated the relationship between the item response time (iRT) and classic item analysis indicators obtained from computer-based test (CBT) results and deduce students' problem-solving behavior using the relationship.

METHODS

We retrospectively analyzed the results of the Comprehensive Basic Medical Sciences Examination conducted for 5 years by a CBT system in Dankook University College of Medicine. iRT is defined as the time spent to answer the question. The discrimination index and the difficulty level were used to analyze the items using classical test theory (CTT). The relationship of iRT and the CTT were investigated using a correlation analysis. An analysis of variance was performed to identify the difference between iRT and difficulty level. A regression analysis was conducted to examine the effect of the difficulty index and discrimination index on iRT.

RESULTS

iRT increases with increasing difficulty index, and iRT tends to decrease with increasing discrimination index. The students' effort is increased when they solve difficult items but reduced when they are confronted with items with a high discrimination. The students' test effort represented by iRT was properly maintained when the items have a 'desirable' difficulty and a 'good' discrimination.

CONCLUSION

The results of our study show that an adequate degree of item difficulty and discrimination is required to increase students' motivation. It might be inferred that with the combination of CTT and iRT, we can gain insights about the quality of the examination and test behaviors of the students, which can provide us with more powerful tools to improve them.

摘要

目的

本研究调查了项目反应时间(iRT)与基于计算机考试(CBT)结果获得的经典项目分析指标之间的关系,并利用该关系推断学生的问题解决行为。

方法

我们回顾性分析了韩国檀国大学医学院CBT系统连续5年进行的基础医学综合考试结果。iRT定义为回答问题所花费的时间。使用经典测试理论(CTT),用区分指数和难度水平来分析题目。通过相关分析研究iRT与CTT之间的关系。进行方差分析以确定iRT与难度水平之间的差异。进行回归分析以检验难度指数和区分指数对iRT的影响。

结果

iRT随着难度指数的增加而增加,并且随着区分指数的增加而趋于减少。学生在解决难题时付出的努力增加,但在面对区分度高的题目时付出的努力减少。当题目具有“理想”的难度和“良好”的区分度时,以iRT表示的学生考试努力程度得到适当维持。

结论

我们的研究结果表明,需要适当程度的题目难度和区分度来提高学生的积极性。可以推断,将CTT和iRT结合起来,我们可以深入了解考试质量和学生的考试行为,这可以为我们提供更强大的工具来改进它们。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc1/6589631/2ad9129fcf13/kjme-2019-113f1.jpg

相似文献

1
The relationship between classical item characteristics and item response time on computer-based testing.
Korean J Med Educ. 2019 Mar;31(1):1-9. doi: 10.3946/kjme.2019.113. Epub 2019 Mar 1.
2
Response pattern of depressive symptoms among college students: What lies behind items of the Beck Depression Inventory-II?
J Affect Disord. 2018 Jul;234:124-130. doi: 10.1016/j.jad.2018.02.064. Epub 2018 Mar 3.
4
The MIR 2018 Exam: Psychometric Study and Comparison with the Previous Nine Years.
Medicina (Kaunas). 2019 Nov 20;55(12):751. doi: 10.3390/medicina55120751.
5
Comparisons of item difficulty and passing scores by test equating in a basic medical education curriculum.
Korean J Med Educ. 2019 Jun;31(2):147-157. doi: 10.3946/kjme.2019.126. Epub 2019 May 30.
6
A primer on classical test theory and item response theory for assessments in medical education.
Med Educ. 2010 Jan;44(1):109-17. doi: 10.1111/j.1365-2923.2009.03425.x.
7
Item development process and analysis of 50 case-based items for implementation on the Korean Nursing Licensing Examination.
J Educ Eval Health Prof. 2017 Sep 11;14:20. doi: 10.3352/jeehp.2017.14.20. eCollection 2017.
10
Item response theory: applications of modern test theory in medical education.
Med Educ. 2003 Aug;37(8):739-45. doi: 10.1046/j.1365-2923.2003.01587.x.

本文引用的文献

1
Introduction to an open source internet-based testing program for medical student examinations.
J Educ Eval Health Prof. 2009 Dec 20;6:4. doi: 10.3352/jeehp.2009.6.4.
2
Preparing the implementation of computerized adaptive testing for high-stakes examinations.
J Educ Eval Health Prof. 2008;5:1. doi: 10.3352/jeehp.2008.5.1. Epub 2008 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验