Suppr超能文献

电子距离检查参数的识别

Identification of parameters for electronic distance examinations.

作者信息

Richter Robin, Tipold Andrea, Schaper Elisabeth

机构信息

Centre for E-Learning, Didactics and Educational Research (ZELDA), University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.

Clinic for Small Animals, Neurology, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.

出版信息

Front Vet Sci. 2024 Jun 19;11:1385681. doi: 10.3389/fvets.2024.1385681. eCollection 2024.

Abstract

INTRODUCTION

This study investigates the log data and response behavior from invigilated in-person electronic timed exams at the University of Veterinary Medicine Hannover, Foundation, Germany. The primary focus is on understanding how various factors influence the time needed per exam item, including item format, item difficulty, item discrimination and character count. The aim was to use these results to derive recommendations for designing timed online distance examinations, an examination format that has become increasingly important in recent years.

METHODS

Data from 216,625 log entries of five electronic exams, taken by a total of 1,241 veterinary medicine students in 2021 and 2022, were analyzed. Various statistical methods were employed to assess the correlations between the recorded parameters.

RESULTS

The analysis revealed that different item formats require varying amounts of time. For instance, image-based question formats and Kprim necessitated more than 60 s per item, whereas one-best-answer multiple-choice questions (MCQs) and individual Key Feature items were effectively completed in less than 60 s. Furthermore, there was a positive correlation between character count and response time, suggesting that longer items require more time. A negative correlation could be verified for the parameters "difficulty" and "discrimination index" towards response time, indicating that more challenging items and those that are less able to differentiate between high- and low-performing students take longer to answer.

CONCLUSION

The findings highlight the need for careful consideration of the ratio of item formats when defining time limits for exams. Regarding exam design, the literature mentions that time pressure is a critical factor, since it can negatively impact students' exam performance and some students, such as those with disabilities, are particularly disadvantaged. Therefore, this study emphasizes finding the right time limits to provide sufficient time for answering questions and reducing time pressure. In the context of unsupervised online exams, the findings of this study support previous recommendations that implementation of a stringent time limit might be a useful strategy to reduce cheating.

摘要

引言

本研究调查了德国汉诺威兽医大学基础学院监考的现场电子定时考试的日志数据和考生反应行为。主要重点是了解各种因素如何影响每个考试项目所需的时间,包括项目格式、项目难度、项目区分度和字符数。目的是利用这些结果得出有关设计定时在线远程考试的建议,这种考试形式近年来变得越来越重要。

方法

分析了2021年和2022年共1241名兽医学学生参加的五场电子考试的216,625条日志记录数据。采用了各种统计方法来评估记录参数之间的相关性。

结果

分析表明,不同的项目格式需要不同的时间量。例如,基于图像的问题格式和Kprim格式每个项目需要60秒以上,而单项最佳答案选择题(MCQ)和单个关键特征项目能在不到60秒内有效完成。此外,字符数与反应时间之间存在正相关,这表明较长的项目需要更多时间。对于“难度”和“区分指数”参数与反应时间之间,可以验证存在负相关,这表明更具挑战性的项目以及那些区分高成绩和低成绩学生能力较弱的项目回答起来需要更长时间。

结论

研究结果强调在确定考试时间限制时需要仔细考虑项目格式的比例。关于考试设计,文献提到时间压力是一个关键因素,因为它会对学生的考试成绩产生负面影响,而且一些学生,如残疾学生,尤其处于不利地位。因此,本研究强调要找到合适的时间限制,以便为回答问题提供足够的时间并减轻时间压力。在无监考的在线考试背景下,本研究结果支持先前的建议,即实施严格的时间限制可能是减少作弊的有用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c44/11220322/295dcb72966f/fvets-11-1385681-g001.jpg

相似文献

1
Identification of parameters for electronic distance examinations.
Front Vet Sci. 2024 Jun 19;11:1385681. doi: 10.3389/fvets.2024.1385681. eCollection 2024.
2
Use of key feature questions in summative assessment of veterinary medicine students.
Ir Vet J. 2013 Mar 7;66(1):3. doi: 10.1186/2046-0481-66-3.
3
[Evaluation of examination preparation methods in veterinary students].
Tierarztl Prax Ausg K Kleintiere Heimtiere. 2020 Feb;48(1):15-25. doi: 10.1055/a-1091-1981. Epub 2020 Feb 14.
6
Impact of summer programmes on the outcomes of disadvantaged or 'at risk' young people: A systematic review.
Campbell Syst Rev. 2024 Jun 13;20(2):e1406. doi: 10.1002/cl2.1406. eCollection 2024 Jun.
7
Writing Multiple Choice Questions-Has the Student Become the Master?
Teach Learn Med. 2023 Jun-Jul;35(3):356-367. doi: 10.1080/10401334.2022.2050240. Epub 2022 May 1.
9
ESHRE Clinical Embryologist certification: the first 10 years.
Hum Reprod Open. 2020 Jul 2;2020(3):hoaa026. doi: 10.1093/hropen/hoaa026. eCollection 2020.
10
An experimental comparison of multiple-choice and short-answer questions on a high-stakes test for medical students.
Adv Health Sci Educ Theory Pract. 2024 Jul;29(3):783-801. doi: 10.1007/s10459-023-10266-3. Epub 2023 Sep 4.

本文引用的文献

1
ChatGPT Passes German State Examination in Medicine With Picture Questions Omitted.
Dtsch Arztebl Int. 2023 May 30;120(21):373-374. doi: 10.3238/arztebl.m2023.0113.
2
ChatGPT in medical school: how successful is AI in progress testing?
Med Educ Online. 2023 Dec;28(1):2220920. doi: 10.1080/10872981.2023.2220920.
3
Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models.
PLOS Digit Health. 2023 Feb 9;2(2):e0000198. doi: 10.1371/journal.pdig.0000198. eCollection 2023 Feb.
4
Veterinary Education during Covid-19 and Beyond-Challenges and Mitigating Approaches.
Animals (Basel). 2021 Jun 18;11(6):1818. doi: 10.3390/ani11061818.
5
High-stakes, remote-access, open-book examinations.
Med Educ. 2020 Aug;54(8):767-768. doi: 10.1111/medu.14247. Epub 2020 Jun 25.
6
The relationship between classical item characteristics and item response time on computer-based testing.
Korean J Med Educ. 2019 Mar;31(1):1-9. doi: 10.3946/kjme.2019.113. Epub 2019 Mar 1.
7
Best practices in summative assessment.
Adv Physiol Educ. 2017 Mar 1;41(1):110-119. doi: 10.1152/advan.00116.2016.
8
Making sense of Cronbach's alpha.
Int J Med Educ. 2011 Jun 27;2:53-55. doi: 10.5116/ijme.4dfb.8dfd.
9
Comparing Open-Book and Closed-Book Examinations: A Systematic Review.
Acad Med. 2016 Apr;91(4):583-99. doi: 10.1097/ACM.0000000000000977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验