School of Computing Science, University of Glasgow , 18 Lilybank Gardens, Glasgow G12 8RZ , UK.
Philos Trans R Soc Lond B Biol Sci. 2019 Apr 29;374(1771):20180027. doi: 10.1098/rstb.2018.0027.
In the increasingly popular and diverse research area of social robotics, the primary goal is to develop robot agents that exhibit socially intelligent behaviour while interacting in a face-to-face context with human partners. An important aspect of face-to-face social conversation is fluent, flexible linguistic interaction; face-to-face dialogue is both the basic form of human communication and the richest and most flexible, combining unrestricted verbal expression with meaningful non-verbal acts such as gestures and facial displays, along with instantaneous, continuous collaboration between the speaker and the listener. In practice, however, most developers of social robots tend not to use the full possibilities of the unrestricted verbal expression afforded by face-to-face conversation; instead, they generally tend to employ relatively simplistic processes for choosing the words for their robots to say. This contrasts with the work carried out Natural Language Generation (NLG), the field of computational linguistics devoted to the automated production of high-quality linguistic content; while this research area is also an active one, in general most effort in NLG is focused on producing high-quality written text. This article summarizes the state of the art in the two individual research areas of social robotics and natural language generation. It then discusses the reasons why so few current social robots make use of more sophisticated generation techniques. Finally, an approach is proposed to bringing some aspects of NLG into social robotics, concentrating on techniques and tools that are most appropriate to the needs of socially interactive robots. This article is part of the theme issue 'From social brains to social robots: applying neurocognitive insights to human-robot interaction'.
在日益流行和多样化的社会机器人研究领域,主要目标是开发表现出社交智能行为的机器人代理,同时与人类伙伴在面对面的环境中进行交互。面对面社交对话的一个重要方面是流畅、灵活的语言交互;面对面的对话既是人类交流的基本形式,也是最丰富和最灵活的形式,它将不受限制的口头表达与手势和面部表情等有意义的非言语行为以及说话者和倾听者之间即时、持续的协作结合在一起。然而,在实践中,大多数社会机器人的开发者并不倾向于利用面对面会话所提供的不受限制的口头表达的全部可能性;相反,他们通常倾向于使用相对简单的过程来为他们的机器人选择要说的话。这与自然语言生成 (NLG) 的工作形成对比,NLG 是计算语言学领域,致力于自动生成高质量的语言内容;虽然这个研究领域也是一个活跃的领域,但 NLG 中的大多数努力通常都集中在生成高质量的书面文本上。本文总结了社会机器人和自然语言生成这两个独立研究领域的最新技术。然后讨论了为什么当前如此少的社会机器人利用更复杂的生成技术。最后,提出了一种将自然语言生成的某些方面引入社会机器人的方法,重点关注最适合社交互动机器人需求的技术和工具。本文是“从社会大脑到社会机器人:将神经认知见解应用于人机交互”主题特刊的一部分。