Suppr超能文献

广义耦合 Hirota 方程:调制不稳定性、高阶矢量 rogue 波和多暗孤子结构。

The general coupled Hirota equations: modulational instability and higher-order vector rogue wave and multi-dark soliton structures.

作者信息

Zhang Guoqiang, Yan Zhenya, Wang Li

机构信息

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

出版信息

Proc Math Phys Eng Sci. 2019 Feb;475(2222):20180625. doi: 10.1098/rspa.2018.0625. Epub 2019 Feb 6.

Abstract

The general coupled Hirota equations are investigated, which describe the wave propagations of two ultrashort optical fields in a fibre. Firstly, we study the modulational instability for the focusing, defocusing and mixed cases. Secondly, we present a unified formula of high-order rational rogue waves (RWs) for the focusing, defocusing and mixed cases, and find that the distribution patterns for novel vector rational RWs of focusing case are more abundant than ones in the scalar model. Thirdly, the th-order vector semirational RWs can demonstrate the coexistence of th-order vector rational RWs and breathers. Fourthly, we derive the multi-dark-dark solitons for the defocsuing and mixed cases. Finally, we derive a formula for the coexistence of dark solitons and RWs. These results further enrich and deepen the understanding of localized wave excitations and applications in vector nonlinear wave systems.

摘要

研究了一般耦合的广田方程,该方程描述了光纤中两个超短光场的波传播。首先,我们研究了聚焦、散焦和混合情况下的调制不稳定性。其次,我们给出了聚焦、散焦和混合情况下高阶有理 rogue 波(RWs)的统一公式,并发现聚焦情况下新型矢量有理 RW 的分布模式比标量模型中的更为丰富。第三,第(n)阶矢量半有理 RW 可以展示第(n)阶矢量有理 RW 和呼吸子的共存。第四,我们推导了散焦和混合情况下的多暗-暗孤子。最后,我们推导了暗孤子和 RW 共存的公式。这些结果进一步丰富和深化了对矢量非线性波系统中局域波激发及其应用的理解。

相似文献

1
The general coupled Hirota equations: modulational instability and higher-order vector rogue wave and multi-dark soliton structures.
Proc Math Phys Eng Sci. 2019 Feb;475(2222):20180625. doi: 10.1098/rspa.2018.0625. Epub 2019 Feb 6.
2
8
Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations.
Phys Rev E. 2018 May;97(5-1):052217. doi: 10.1103/PhysRevE.97.052217.
9
Elliptic-rogue waves and modulational instability in nonlinear soliton equations.
Phys Rev E. 2024 Jun;109(6-1):064209. doi: 10.1103/PhysRevE.109.064209.

本文引用的文献

1
2
Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations.
Phys Rev E. 2017 Apr;95(4-1):042201. doi: 10.1103/PhysRevE.95.042201. Epub 2017 Apr 10.
4
Complementary optical rogue waves in parametric three-wave mixing.
Opt Express. 2016 Mar 21;24(6):5886-95. doi: 10.1364/OE.24.005886.
6
Rogue-wave pattern transition induced by relative frequency.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):022918. doi: 10.1103/PhysRevE.90.022918. Epub 2014 Aug 28.
7
Vector rogue waves and baseband modulation instability in the defocusing regime.
Phys Rev Lett. 2014 Jul 18;113(3):034101. doi: 10.1103/PhysRevLett.113.034101. Epub 2014 Jul 16.
8
Simple determinant representation for rogue waves of the nonlinear Schrödinger equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):043201. doi: 10.1103/PhysRevE.88.043201. Epub 2013 Oct 2.
9
Rogue waves emerging from the resonant interaction of three waves.
Phys Rev Lett. 2013 Sep 13;111(11):114101. doi: 10.1103/PhysRevLett.111.114101.
10
Generating mechanism for higher-order rogue waves.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052914. doi: 10.1103/PhysRevE.87.052914. Epub 2013 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验