Suppr超能文献

加权网络中基于重要性的社区检测。

Significance-based community detection in weighted networks.

作者信息

Palowitch John, Bhamidi Shankar, Nobel Andrew B

机构信息

Department of Statistics and Operations Research University of North Carolina at Chapel Hill Chapel Hill, NC 27599.

出版信息

J Mach Learn Res. 2018 Apr;18.

Abstract

Community detection is the process of grouping strongly connected nodes in a network. Many community detection methods for -weighted networks have a theoretical basis in a null model. Communities discovered by these methods therefore have interpretations in terms of statistical significance. In this paper, we introduce a null for weighted networks called the continuous configuration model. First, we propose a community extraction algorithm for weighted networks which incorporates iterative hypothesis testing under the null. We prove a central limit theorem for edge-weight sums and asymptotic consistency of the algorithm under a weighted stochastic block model. We then incorporate the algorithm in a community detection method called CCME. To benchmark the method, we provide a simulation framework involving the null to plant "background" nodes in weighted networks with communities. We show that the empirical performance of CCME on these simulations is competitive with existing methods, particularly when overlapping communities and background nodes are present. To further validate the method, we present two real-world networks with potential background nodes and analyze them with CCME, yielding results that reveal macro-features of the corresponding systems.

摘要

社区检测是在网络中对强连接节点进行分组的过程。许多针对加权网络的社区检测方法在空模型中有理论基础。因此,通过这些方法发现的社区具有统计学意义上的解释。在本文中,我们引入了一种称为连续配置模型的加权网络空模型。首先,我们提出了一种用于加权网络的社区提取算法,该算法在空模型下纳入了迭代假设检验。我们证明了边权和的中心极限定理以及该算法在加权随机块模型下的渐近一致性。然后,我们将该算法纳入一种称为CCME的社区检测方法中。为了对该方法进行基准测试,我们提供了一个模拟框架,该框架涉及空模型,以便在具有社区的加权网络中植入“背景”节点。我们表明,CCME在这些模拟中的实证性能与现有方法具有竞争力,特别是当存在重叠社区和背景节点时。为了进一步验证该方法,我们展示了两个具有潜在背景节点的真实世界网络,并用CCME对它们进行分析,得出的结果揭示了相应系统的宏观特征。

相似文献

2
Efficient discovery of overlapping communities in massive networks.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14534-9. doi: 10.1073/pnas.1221839110. Epub 2013 Aug 15.
4
Extracting backbones in weighted modular complex networks.
Sci Rep. 2020 Sep 23;10(1):15539. doi: 10.1038/s41598-020-71876-0.
5
Degree-corrected distribution-free model for community detection in weighted networks.
Sci Rep. 2022 Sep 7;12(1):15153. doi: 10.1038/s41598-022-19456-2.
6
Community extraction for social networks.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7321-6. doi: 10.1073/pnas.1006642108. Epub 2011 Apr 18.
9
Discovering link communities in complex networks by an integer programming model and a genetic algorithm.
PLoS One. 2013 Dec 30;8(12):e83739. doi: 10.1371/journal.pone.0083739. eCollection 2013.

引用本文的文献

1
A QUANTITATIVE LINGUISTIC ANALYSIS OF A CANCER ONLINE HEALTH COMMUNITY WITH A SMOOTH LATENT SPACE MODEL.
Ann Appl Stat. 2024 Mar;18(1):144-158. doi: 10.1214/23-aoas1783. Epub 2024 Jan 31.
2
Estimating the Number of Communities in Weighted Networks.
Entropy (Basel). 2023 Mar 23;25(4):551. doi: 10.3390/e25040551.
3
Degree-corrected distribution-free model for community detection in weighted networks.
Sci Rep. 2022 Sep 7;12(1):15153. doi: 10.1038/s41598-022-19456-2.
4
On the statistical significance of communities from weighted graphs.
Sci Rep. 2021 Oct 13;11(1):20304. doi: 10.1038/s41598-021-99175-2.
5
Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models.
PLoS One. 2021 Jul 2;16(7):e0254057. doi: 10.1371/journal.pone.0254057. eCollection 2021.
6
Demarcating geographic regions using community detection in commuting networks with significant self-loops.
PLoS One. 2020 Apr 29;15(4):e0230941. doi: 10.1371/journal.pone.0230941. eCollection 2020.

本文引用的文献

1
Nonparametric weighted stochastic block models.
Phys Rev E. 2018 Jan;97(1-1):012306. doi: 10.1103/PhysRevE.97.012306.
2
Bipartite Community Structure of eQTLs.
PLoS Comput Biol. 2016 Sep 12;12(9):e1005033. doi: 10.1371/journal.pcbi.1005033. eCollection 2016 Sep.
3
Model selection for degree-corrected block models.
J Stat Mech. 2014 May;2014(5). doi: 10.1088/1742-5468/2014/05/P05007.
4
SECOM: a novel hash seed and community detection based-approach for genome-scale protein domain identification.
PLoS One. 2012;7(6):e39475. doi: 10.1371/journal.pone.0039475. Epub 2012 Jun 28.
5
Finding statistically significant communities in networks.
PLoS One. 2011 Apr 29;6(4):e18961. doi: 10.1371/journal.pone.0018961.
6
Community extraction for social networks.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7321-6. doi: 10.1073/pnas.1006642108. Epub 2011 Apr 18.
7
Stochastic blockmodels and community structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.
8
A nonparametric view of network models and Newman-Girvan and other modularities.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21068-73. doi: 10.1073/pnas.0907096106. Epub 2009 Nov 23.
9
Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016118. doi: 10.1103/PhysRevE.80.016118. Epub 2009 Jul 31.
10
Maps of random walks on complex networks reveal community structure.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23. doi: 10.1073/pnas.0706851105. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验