Zhang Qiannan, Solanki Ankur, Parida Kaushik, Giovanni David, Li Mingjie, Jansen Thomas L C, Pshenichnikov Maxim S, Sum Tze Chien
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore.
School of Material Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore.
ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13523-13532. doi: 10.1021/acsami.8b21579. Epub 2019 Apr 1.
Ruddlesden-Popper (RP) halide perovskites are the new kids on the block for high-performance perovskite photovoltaics with excellent ambient stability. The layered nature of these perovskites offers an exciting possibility of harnessing their ferroelectric property for photovoltaics. Adjacent polar domains in a ferroelectric material allow the spatial separation of electrons and holes. Presently, the structure-function properties governing the ferroelectric behavior of RP perovskites are an open question. Herein, we realize tunable ferroelectricity in 2-phenylethylammonium (PEA) and methylammonium (MA) RP perovskite (PEA)(MA) Pb I. Second harmonic generation (SHG) confirms the noncentrosymmetric nature of these polycrystalline thin films, whereas piezoresponse force microscopy and polarization-electric field measurements validate the microscopic and macroscopic ferroelectric properties. Temperature-dependent SHG and dielectric constant measurements uncover a phase transition temperature at around 170 °C in these films. Extensive molecular dynamics simulations support the experimental results and identified the correlated reorientation of MA molecules and ion translations as the source of ferroelectricity. Current-voltage characteristics in the dark reveal the persistence of hysteresis in these devices, which has profound implications for light-harvesting and light-emitting applications. Importantly, our findings disclose a viable approach for engineering the ferroelectric properties of RP perovskites that may unlock new functionalities for perovskite optoelectronics.
鲁德尔斯登-波珀(RP)卤化物钙钛矿是高性能钙钛矿光伏领域的新成员,具有出色的环境稳定性。这些钙钛矿的层状结构为将其铁电特性应用于光伏领域提供了令人兴奋的可能性。铁电材料中相邻的极性域允许电子和空穴在空间上分离。目前,决定RP钙钛矿铁电行为的结构-功能特性仍是一个悬而未决的问题。在此,我们在2-苯乙铵(PEA)和甲铵(MA)的RP钙钛矿(PEA)(MA)PbI中实现了可调谐铁电性。二次谐波产生(SHG)证实了这些多晶薄膜的非中心对称性质,而压电力显微镜和极化-电场测量验证了微观和宏观铁电特性。温度依赖的SHG和介电常数测量揭示了这些薄膜中约170°C的相变温度。广泛的分子动力学模拟支持了实验结果,并确定MA分子的相关重新取向和离子迁移是铁电性的来源。黑暗中的电流-电压特性揭示了这些器件中滞后现象的持续性,这对光捕获和发光应用具有深远意义。重要的是,我们的发现揭示了一种设计RP钙钛矿铁电特性的可行方法,这可能为钙钛矿光电器件解锁新功能。