Suppr超能文献

通过尸体计算机断层扫描诊断的孤立性髁突骨折。

Isolated condylar fractures diagnosed by post mortem computed tomography.

作者信息

Borowska-Solonynko Aleksandra, Prokopowicz Victoria, Samojłowicz Dorota, Brzozowska Małgorzata, Żyłkowski Jarosław, Lombarski Leszek

机构信息

Department of Forensic Medicine, Medical University of Warsaw, 1 Oczki st., 02-007, Warsaw, Poland.

Second Department of Clinical Radiology, Medical University of Warsaw, 1a Banacha st., 02-097, Warsaw, Poland.

出版信息

Forensic Sci Med Pathol. 2019 Jun;15(2):218-223. doi: 10.1007/s12024-019-00104-7. Epub 2019 Mar 12.

Abstract

Due to their anatomical location, occipital condylar fractures (OCFs) are usually not observed during traditional autopsies and are therefore considered a rare injury. The aim of this study was to determine the true frequency of OCFs using post-mortem computed tomography (PMCT) in traumatic casualties. We retrospectively analyzed 438 PMCT studies of victims of traffic accidents, falls from height, violence, and low-energy head injuries (324 males and 114 females). OCFs were present in 22.6% of cases (n = 99), mostly in victims of railway accidents (48.5%, n = 17), falls from height (26.6%, n = 29), cyclists (24%, n = 6), and pedestrians hit by cars (22.5%, n = 29). Isolated OCFs were found in 5.5% of cases (n = 24), most often in cyclists (12%, n = 3) and pedestrians (9.3%, n = 12) hit by cars. There were no OCFs in the cases of fatalities caused by violence or accidental low-energy head injury. PMCT scans revealed that OCFs are common in high-energy injury fatalities and can be useful for determining the mechanism of trauma more precisely.

摘要

由于枕髁骨折(OCFs)的解剖位置,在传统尸检中通常无法观察到,因此被认为是一种罕见的损伤。本研究的目的是使用创伤性伤亡者的死后计算机断层扫描(PMCT)来确定枕髁骨折的实际发生率。我们回顾性分析了438例交通事故、高处坠落、暴力和低能量头部损伤受害者的PMCT研究(男性324例,女性114例)。枕髁骨折在22.6%的病例中出现(n = 99),主要见于铁路事故受害者(48.5%,n = 17)、高处坠落者(26.6%,n = 29)、骑自行车者(24%,n = 6)和被汽车撞到的行人(22.5%,n = 29)。孤立性枕髁骨折在5.5%的病例中发现(n = 24),最常见于被汽车撞到的骑自行车者(12%,n = 3)和行人(9.3%,n = 12)。暴力或意外低能量头部损伤导致的死亡病例中未发现枕髁骨折。PMCT扫描显示,枕髁骨折在高能量损伤死亡病例中很常见,并且有助于更精确地确定创伤机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a92d/6505491/c00acf30d9e9/12024_2019_104_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验