Scharf Henry R, Hooten Mevin B, Wilson Ryan R, Durner George M, Atwood Todd C
Department of Statistics, Colorado State University, Fort Collins, Colorado.
Department of Fish, Wildlife, and Conservation Biology, Colorado Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Fort Collins, Colorado.
Biometrics. 2019 Sep;75(3):810-820. doi: 10.1111/biom.13052. Epub 2019 Jun 24.
The analysis of animal tracking data provides important scientific understanding and discovery in ecology. Observations of animal trajectories using telemetry devices provide researchers with information about the way animals interact with their environment and each other. For many species, specific geographical features in the landscape can have a strong effect on behavior. Such features may correspond to a single point (eg, dens or kill sites), or to higher dimensional subspaces (eg, rivers or lakes). Features may be relatively static in time (eg, coastlines or home-range centers), or may be dynamic (eg, sea ice extent or areas of high-quality forage for herbivores). We introduce a novel model for animal movement that incorporates active selection for dynamic features in a landscape. Our approach is motivated by the study of polar bear (Ursus maritimus) movement. During the sea ice melt season, polar bears spend much of their time on sea ice above shallow, biologically productive water where they hunt seals. The changing distribution and characteristics of sea ice throughout the year mean that the location of valuable habitat is constantly shifting. We develop a model for the movement of polar bears that accounts for the effect of this important landscape feature. We introduce a two-stage procedure for approximate Bayesian inference that allows us to analyze over 300 000 observed locations of 186 polar bears from 2012 to 2016. We use our model to estimate a spatial boundary of interest to wildlife managers that separates two subpopulations of polar bears from the Beaufort and Chukchi seas.
对动物追踪数据的分析为生态学提供了重要的科学认识和发现。使用遥测设备对动物轨迹进行观测,为研究人员提供了有关动物与环境以及彼此之间相互作用方式的信息。对于许多物种而言,景观中的特定地理特征会对其行为产生强烈影响。这些特征可能对应于单个点(例如巢穴或捕杀地点),或者对应于更高维度的子空间(例如河流或湖泊)。特征在时间上可能相对静止(例如海岸线或活动范围中心),也可能是动态的(例如海冰范围或食草动物的优质觅食区域)。我们引入了一种新的动物运动模型,该模型纳入了对景观中动态特征的主动选择。我们的方法是受北极熊(Ursus maritimus)运动研究的启发。在海冰融化季节,北极熊大部分时间都在浅海、生物生产力高的海域上方的海冰上,它们在那里捕食海豹。海冰全年不断变化的分布和特征意味着宝贵栖息地的位置在不断变化。我们开发了一个考虑到这一重要景观特征影响的北极熊运动模型。我们引入了一种用于近似贝叶斯推断的两阶段程序,这使我们能够分析2012年至2016年186只北极熊的30多万个观测位置。我们使用我们的模型来估计野生动物管理者感兴趣的一个空间边界,该边界将波弗特海和楚科奇海的两个北极熊亚种群分隔开来。