Walter M F, Uster P S, Deamer D W
Eur J Cell Biol. 1986 Apr;40(2):195-202.
Large, unilamellar vesicles composed of equimolar amounts of acidic phosopholipids and phosphatidylethanolamine were able to deliver fluorescent dye [5(6)-carboxyfluorescein] or a monoclonal antibody directed against intermediate-filament proteins to a Drosophila cell line (Kc cells). Millimolar Ca2+ or protamine sulfate in microgram quantities triggered rapid, synchronous delivery of either solute. Delivery required a specific lipid composition: liposomes composed of 1:1 mole ratios of phosphatidylethanolamine:phosphatidylserine were able to deliver their contents, but not if phosphatidylcholine was substituted for phosphatidylethanolamine. Light microscopic observation of Kc cells incubated with free dye or antibody alone showed very little uptake, a result indicating that encapsulation within liposomes is a prerequisite for substantial delivery. Moreover, the stability of adhering vesicles in the absence of calcium or protamine sulfate, the lipid specificity, and the rapid onset of intracellular fluorescence after triggering suggest that vesicle-cell fusion is the predominant mode of solute uptake. Fusion of liposomes with the cell membrane was confirmed by freeze-fracture electron microscopy, which showed liposome vesicles first adhering to cell surfaces, then undergoing fusion when calcium or protamine sulfate was added.