Suppr超能文献

隐球菌性脑膜炎与抗毒力治疗策略

Cryptococcal Meningitis and Anti-virulence Therapeutic Strategies.

作者信息

Vu Kiem, Garcia Javier A, Gelli Angie

机构信息

Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States.

出版信息

Front Microbiol. 2019 Feb 26;10:353. doi: 10.3389/fmicb.2019.00353. eCollection 2019.

Abstract

Fungal infections of the central nervous system are responsible for significant morbidity and mortality. () is the primary cause of fungal meningitis. Infection begins in the lung after inhalation of fungal spores but often spreads to other organs, particularly the brain in immunosuppressed individuals. 's ability to survive phagocytosis and endure the onslaught of oxidative attack imposed by the innate immune response facilitates dissemination to the central nervous system (CNS). Despite the success of at bypassing innate immunity, entry into the heavily protected brain requires that overwhelm the highly restricted blood-brain barrier (BBB). This is a formidable task but mounting evidence suggests that expresses surface-bound and secreted virulence factors including urease, metalloprotease, and hyaluronic acid that can undermine the BBB. In addition, can exploit multiple routes of entry to gain access to the CNS. In this review, we discuss the cellular and molecular interface of and the BBB, and we propose that the virulence factors mediating BBB crossing could be targeted for the development of anti-virulence drugs aimed at preventing fungal colonization of the CNS.

摘要

中枢神经系统真菌感染会导致严重的发病率和死亡率。()是真菌性脑膜炎的主要病因。吸入真菌孢子后感染始于肺部,但在免疫抑制个体中常扩散至其他器官,尤其是脑部。()在吞噬作用中存活以及抵御先天免疫反应施加的氧化攻击的能力,有助于其扩散至中枢神经系统(CNS)。尽管()成功绕过了先天免疫,但进入受到严密保护的脑部需要()突破高度受限的血脑屏障(BBB)。这是一项艰巨的任务,但越来越多的证据表明,()表达包括脲酶、金属蛋白酶和透明质酸在内的表面结合型和分泌型毒力因子,这些因子会破坏血脑屏障。此外,()可利用多种进入途径进入中枢神经系统。在本综述中,我们讨论了()与血脑屏障的细胞和分子界面,并提出介导血脑屏障穿越的毒力因子可作为开发旨在预防中枢神经系统真菌定植的抗毒力药物的靶点。

相似文献

1
Cryptococcal Meningitis and Anti-virulence Therapeutic Strategies.
Front Microbiol. 2019 Feb 26;10:353. doi: 10.3389/fmicb.2019.00353. eCollection 2019.
3
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.
mBio. 2017 Jan 31;8(1):e02183-16. doi: 10.1128/mBio.02183-16.
4
Mechanisms and Virulence Factors of Dissemination to the Central Nervous System.
J Fungi (Basel). 2024 Aug 17;10(8):586. doi: 10.3390/jof10080586.
6
Harnessing the Activity of the Fungal Metalloprotease, Mpr1, To Promote Crossing of Nanocarriers through the Blood-Brain Barrier.
ACS Infect Dis. 2020 Jan 10;6(1):138-149. doi: 10.1021/acsinfecdis.9b00348. Epub 2019 Dec 18.
7
Innate immune evasion strategies against Cryptococcal meningitis caused by .
Exp Ther Med. 2017 Dec;14(6):5243-5250. doi: 10.3892/etm.2017.5220. Epub 2017 Sep 29.
9
The Metalloprotease, Mpr1, Engages AnnexinA2 to Promote the Transcytosis of Fungal Cells across the Blood-Brain Barrier.
Front Cell Infect Microbiol. 2017 Jun 30;7:296. doi: 10.3389/fcimb.2017.00296. eCollection 2017.
10
Roles for Microglia in Cryptococcal Brain Dissemination in the Zebrafish Larva.
Microbiol Spectr. 2023 Jan 31;11(2):e0431522. doi: 10.1128/spectrum.04315-22.

引用本文的文献

1
Clinical treatment of cryptococcal meningitis: an evidence-based review on the emerging clinical data.
J Neurol. 2024 Jun;271(6):2960-2979. doi: 10.1007/s00415-024-12193-8. Epub 2024 Jan 30.
3
Proteasome inhibition as a therapeutic target for the fungal pathogen .
Microbiol Spectr. 2023 Sep 26;11(5):e0190423. doi: 10.1128/spectrum.01904-23.
4
5
Synergistic antifungal interaction of -(butylcarbamothioyl) benzamide and amphotericin B against .
Front Microbiol. 2023 Mar 7;14:1040671. doi: 10.3389/fmicb.2023.1040671. eCollection 2023.
6
Developing novel antifungals: lessons from G protein-coupled receptors.
Trends Pharmacol Sci. 2023 Mar;44(3):162-174. doi: 10.1016/j.tips.2022.12.002.
7
Protective interaction of human phagocytic APC subsets with induces genes associated with metabolism and antigen presentation.
Front Immunol. 2022 Nov 15;13:1054477. doi: 10.3389/fimmu.2022.1054477. eCollection 2022.
9
Three Models of Vaccination Strategies Against Cryptococcosis in Immunocompromised Hosts Using Heat-Killed Δ.
Front Immunol. 2022 May 9;13:868523. doi: 10.3389/fimmu.2022.868523. eCollection 2022.
10
Bacterial-fungal interactions and their impact on microbial pathogenesis.
Mol Ecol. 2023 May;32(10):2565-2581. doi: 10.1111/mec.16411. Epub 2022 Mar 14.

本文引用的文献

1
Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection.
Eur J Med Chem. 2018 Aug 5;156:126-136. doi: 10.1016/j.ejmech.2018.06.065. Epub 2018 Jul 2.
3
Antifungal Combinations for Treatment of Cryptococcal Meningitis in Africa.
N Engl J Med. 2018 Mar 15;378(11):1004-1017. doi: 10.1056/NEJMoa1710922.
4
5
Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus.
Nat Microbiol. 2018 Feb;3(2):172-180. doi: 10.1038/s41564-017-0081-7. Epub 2018 Jan 1.
7
The blood-brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor.
Cell Microbiol. 2018 Mar;20(3). doi: 10.1111/cmi.12811. Epub 2018 Jan 18.
8
Astrocytic tight junctions control inflammatory CNS lesion pathogenesis.
J Clin Invest. 2017 Aug 1;127(8):3136-3151. doi: 10.1172/JCI91301. Epub 2017 Jul 24.
9
The Metalloprotease, Mpr1, Engages AnnexinA2 to Promote the Transcytosis of Fungal Cells across the Blood-Brain Barrier.
Front Cell Infect Microbiol. 2017 Jun 30;7:296. doi: 10.3389/fcimb.2017.00296. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验