Suppr超能文献

一种基于鼠类的体外 3D 肾脏近端小管模型可预测临床药物诱导的肾毒性。

A murine ex vivo 3D kidney proximal tubule model predicts clinical drug-induced nephrotoxicity.

机构信息

Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA.

Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112-5820, USA.

出版信息

Arch Toxicol. 2019 May;93(5):1349-1364. doi: 10.1007/s00204-019-02430-9. Epub 2019 Mar 12.

Abstract

Drug attrition and clinical product withdrawals due to nephrotoxicity remain major challenges for pharmaceutical drug development pipelines. Currently, no reliable high-throughput in vitro screening models are available that provide reliable, predictive toxicology data for clinical nephrotoxicity. Drug screens to predict toxicity and pharmacology assessments are compromised by standard two-dimensional (2D) cell monoculture models. Here we extend a previously reported murine three-dimensional (3D) kidney-derived intact proximal tubule model to provide ex vivo drug toxicity data that reliably compare to clinical experiences and improve nephrotoxicity predictions over current 2D cell assays. Proximal tubule cytotoxicity was monitored by ATP depletion for 12 compounds (acarbose, acetylsalicylic acid, captopril, cimetidine, cidofovir, cisplatin, doxorubicin, gentamicin, polymyxin B, polymyxin B nonapeptide, probenecid and vancomycin) in 3D proximal tubule ex vivo assays. Drug concentration-response curves (1-1000 µM) and IC, lowest effective concentration (LEC) and AUC values were compared to clinical therapeutic exposure levels (C). The 100-fold C threshold demonstrated best sensitivity (96.9%) and specificity (87.5%) for this assay, with high positive (93.9%) and negative (93.3%) predictive values for nephrotoxicity. IC values were superior to LEC. Results also support the model's capability to predict substrate-inhibitor/competitor interactions, yielding toxicity results similar to those reported in vivo. These 3D proximal tubule-based drug screens provide more reliable nephrotoxicity predictions, and more insight into complex mechanisms implicated in nephrotoxicity than current standard 2D cell assays. This new approach for rapid drug toxicity testing produces more reliable clinical comparisons than current 2D cell culture screening techniques.

摘要

由于肾毒性导致的药物淘汰和临床产品撤回仍然是药物开发管道的主要挑战。目前,尚无可靠的高通量体外筛选模型可提供用于临床肾毒性的可靠、有预测性的毒理学数据。用于预测毒性和药理学评估的药物筛选受到标准二维 (2D) 细胞单层培养模型的限制。在这里,我们扩展了之前报道的鼠类三维 (3D) 肾脏衍生完整近端肾小管模型,以提供可靠地与临床经验相比较并改善现有 2D 细胞测定对肾毒性预测的体外药物毒性数据。通过监测 12 种化合物 (阿卡波糖、乙酰水杨酸、卡托普利、西咪替丁、更昔洛韦、顺铂、阿霉素、庆大霉素、多粘菌素 B、多粘菌素 B 九肽、丙磺舒和万古霉素) 在 3D 近端肾小管体外测定中的 ATP 耗竭来监测近端肾小管细胞毒性。将药物浓度-反应曲线 (1-1000µM) 和 IC、最低有效浓度 (LEC) 和 AUC 值与临床治疗暴露水平 (C) 进行比较。该检测的 100 倍 C 阈值对该检测具有最佳的灵敏度 (96.9%) 和特异性 (87.5%),对肾毒性具有高阳性 (93.9%) 和阴性 (93.3%) 预测值。IC 值优于 LEC。结果还支持该模型预测底物抑制剂/竞争物相互作用的能力,得出与体内报道相似的毒性结果。与当前的标准 2D 细胞测定相比,基于 3D 近端肾小管的这些药物筛选可提供更可靠的肾毒性预测,并更深入地了解与肾毒性相关的复杂机制。与当前的 2D 细胞培养筛选技术相比,这种用于快速药物毒性测试的新方法可产生更可靠的临床比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验