Xu Tailin, Cheng Guanzhi, Liu Conghui, Li Tianlong, Zhang Xueji
Research Center for Biomedical and Health Science, Anhui Science and Technology University, Fengyang, 233100, China.
Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, China.
Chem Asian J. 2019 Jul 15;14(14):2440-2444. doi: 10.1002/asia.201900066. Epub 2019 Mar 13.
The assembly of micro-nanoparticles is one of the key tasks for controlling and manipulating the structure of materials at micro/-nanoscale. By carefully designing the ultrasound experiments and comparing the results with acoustic theories, we presented an in-depth study of the ultrasound-induced assembly behaviors of micro/-nanoparticles (microparticle size≪wavelength), especially their dynamic interactions between microparticles. The whole assembly processes including floating micro/nanoparticles, single particle communication, assembly to single particle interactions, and reorganization of assembly are fully studied. A rapid response of the ultrasound-based assembly (0.5 min) shows distinct advantages compared to those of previously used methods such as light-, electrical- and temperature-based ones. Such an efficient and effective microparticle assembly holds great promise for fabrication of complex structure of materials.
微纳米颗粒的组装是在微纳尺度上控制和操纵材料结构的关键任务之一。通过精心设计超声实验并将结果与声学理论进行比较,我们对微纳米颗粒(微粒尺寸≪波长)的超声诱导组装行为进行了深入研究,特别是它们在微粒之间的动态相互作用。对包括漂浮的微/纳米颗粒、单颗粒通信、组装到单颗粒相互作用以及组装重组在内的整个组装过程进行了充分研究。与先前使用的基于光、电和温度的方法相比,基于超声的组装具有快速响应(0.5分钟)的明显优势。这种高效且有效的微粒组装在制造复杂材料结构方面具有巨大潜力。