文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于组学数据的多核学习在乳腺癌分型中的应用。

Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data.

机构信息

Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China.

Computational System Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.

出版信息

Genes (Basel). 2019 Mar 7;10(3):200. doi: 10.3390/genes10030200.


DOI:10.3390/genes10030200
PMID:30866472
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6471546/
Abstract

It is very significant to explore the intrinsic differences in breast cancer subtypes. These intrinsic differences are closely related to clinical diagnosis and designation of treatment plans. With the accumulation of biological and medicine datasets, there are many different omics data that can be viewed in different aspects. Combining these multiple omics data can improve the accuracy of prediction. Meanwhile; there are also many different databases available for us to download different types of omics data. In this article, we use estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) to define breast cancer subtypes and classify any two breast cancer subtypes using SMO-MKL algorithm. We collected mRNA data, methylation data and copy number variation (CNV) data from TCGA to classify breast cancer subtypes. Multiple Kernel Learning (MKL) is employed to use these omics data distinctly. The result of using three omics data with multiple kernels is better than that of using single omics data with multiple kernels. Furthermore; these significant genes and pathways discovered in the feature selection process are also analyzed. In experiments; the proposed method outperforms other state-of-the-art methods and has abundant biological interpretations.

摘要

探索乳腺癌亚型的内在差异非常重要。这些内在差异与临床诊断和治疗方案的指定密切相关。随着生物和医学数据集的积累,有许多不同的组学数据可以从不同的角度进行观察。结合这些多种组学数据可以提高预测的准确性。同时,也有许多不同的数据库可供我们下载不同类型的组学数据。在本文中,我们使用雌激素受体 (ER)、孕激素受体 (PR)、人表皮生长因子受体 2 (HER2) 来定义乳腺癌亚型,并使用 SMO-MKL 算法对任意两种乳腺癌亚型进行分类。我们从 TCGA 收集了 mRNA 数据、甲基化数据和拷贝数变异 (CNV) 数据来对乳腺癌亚型进行分类。多核学习 (MKL) 用于区分这些组学数据。使用多核的三种组学数据的结果优于使用多核的单一组学数据的结果。此外,还对特征选择过程中发现的显著基因和途径进行了分析。在实验中,所提出的方法优于其他最先进的方法,并且具有丰富的生物学解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/f786ed292216/genes-10-00200-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/115560b8c096/genes-10-00200-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/0ffe44eb5f24/genes-10-00200-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/6c178bfc8909/genes-10-00200-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/73f22f081e1c/genes-10-00200-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/c6767e6f35a4/genes-10-00200-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/cab3c0f2f7b9/genes-10-00200-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/33da99021dfb/genes-10-00200-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/c81bbb7cbfcb/genes-10-00200-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/f786ed292216/genes-10-00200-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/115560b8c096/genes-10-00200-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/0ffe44eb5f24/genes-10-00200-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/6c178bfc8909/genes-10-00200-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/73f22f081e1c/genes-10-00200-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/c6767e6f35a4/genes-10-00200-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/cab3c0f2f7b9/genes-10-00200-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/33da99021dfb/genes-10-00200-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/c81bbb7cbfcb/genes-10-00200-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5b/6471546/f786ed292216/genes-10-00200-g009.jpg

相似文献

[1]
Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data.

Genes (Basel). 2019-3-7

[2]
Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data.

Genes (Basel). 2020-8-4

[3]
Integrated multi-omics profiling of high-grade estrogen receptor-positive, HER2-negative breast cancer.

Mol Oncol. 2022-6

[4]
Molecular Profiling of Breast Carcinoma in Almadinah, KSA: Immunophenotyping and Clinicopathological Correlation.

Asian Pac J Cancer Prev. 2015

[5]
Defining breast cancer intrinsic subtypes by quantitative receptor expression.

Oncologist. 2015-5

[6]
Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A.

Oncotarget. 2017-6-20

[7]
The method for breast cancer grade prediction and pathway analysis based on improved multiple kernel learning.

J Bioinform Comput Biol. 2017-2

[8]
Dysregulation of the epigenome in triple-negative breast cancers: basal-like and claudin-low breast cancers express aberrant DNA hypermethylation.

Exp Mol Pathol. 2013-9-14

[9]
Comprehensive profiling of biological processes reveals two major prognostic subtypes in breast cancer.

Tumour Biol. 2016-3

[10]
Poor prognosis of single hormone receptor- positive breast cancer: similar outcome as triple-negative breast cancer.

BMC Cancer. 2015-3-18

引用本文的文献

[1]
KYNU is a potential metabolic-related biomarker for nasopharyngeal carcinoma by Raman spectroscopy, metabolomics, and transcriptomics analysis.

Discov Oncol. 2025-8-22

[2]
A review of the use of tumour DNA methylation for breast cancer subtyping and prediction of outcomes.

Clin Epigenetics. 2025-7-2

[3]
Monkey king evolution (MKE)-GA-SVM model for subtype classification of breast cancer.

Digit Health. 2024-12-10

[4]
Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning.

BMC Bioinformatics. 2024-3-27

[5]
Classifying breast cancer using multi-view graph neural network based on multi-omics data.

Front Genet. 2024-2-20

[6]
Firefly-SVM predictive model for breast cancer subgroup classification with clinicopathological parameters.

Digit Health. 2023-10-16

[7]
moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.

BMC Bioinformatics. 2023-4-26

[8]
Integration of multi-omics data reveals a novel hybrid breast cancer subtype and its biomarkers.

Front Oncol. 2023-3-21

[9]
Biomedical Application of Identified Biomarkers Gene Expression Based Early Diagnosis and Detection in Cervical Cancer with Modified Probabilistic Neural Network.

Contrast Media Mol Imaging. 2022

[10]
Heterogeneous data integration methods for patient similarity networks.

Brief Bioinform. 2022-7-18

本文引用的文献

[1]
A Multiple Kernel Learning Model Based on -Norm.

Comput Intell Neurosci. 2018-1-23

[2]
Prognostic parameters of luminal A and luminal B intrinsic breast cancer subtypes of Pakistani patients.

World J Surg Oncol. 2018-1-2

[3]
Tumor Heterogeneity in Breast Cancer.

Front Med (Lausanne). 2017-12-8

[4]
A pathways-based prediction model for classifying breast cancer subtypes.

Oncotarget. 2017-6-17

[5]
Characterisation of GATA3 expression in invasive breast cancer: differences in histological subtypes and immunohistochemically defined molecular subtypes.

J Clin Pathol. 2017-11

[6]
A feature selection method based on multiple kernel learning with expression profiles of different types.

BioData Min. 2017-2-2

[7]
The method for breast cancer grade prediction and pathway analysis based on improved multiple kernel learning.

J Bioinform Comput Biol. 2017-2

[8]
Exploring the intrinsic differences among breast tumor subtypes defined using immunohistochemistry markers based on the decision tree.

Sci Rep. 2016-10-27

[9]
Features of triple-negative breast cancer: Analysis of 38,813 cases from the national cancer database.

Medicine (Baltimore). 2016-8

[10]
Clinicopathological characteristics of patients with HER2-positive breast cancer and the efficacy of trastuzumab in the People's Republic of China.

Onco Targets Ther. 2016-4-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索