Suppr超能文献

使用二维卷积神经网络识别Rab蛋白中的GTP结合位点。

Using two-dimensional convolutional neural networks for identifying GTP binding sites in Rab proteins.

作者信息

Le Nguyen Quoc Khanh, Ho Quang-Thai, Ou Yu-Yen

机构信息

* Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan 32003, R. O. C.

† School of Humanities, Nanyang Technological University, 48 Nanyang Ave, Singapore 639798, Singapore.

出版信息

J Bioinform Comput Biol. 2019 Feb;17(1):1950005. doi: 10.1142/S0219720019500057.

Abstract

Deep learning has been increasingly and widely used to solve numerous problems in various fields with state-of-the-art performance. It can also be applied in bioinformatics to reduce the requirement for feature extraction and reach high performance. This study attempts to use deep learning to predict GTP binding sites in Rab proteins, which is one of the most vital molecular functions in life science. A functional loss of GTP binding sites in Rab proteins has been implicated in a variety of human diseases (choroideremia, intellectual disability, cancer, Parkinson's disease). Therefore, creating a precise model to identify their functions is a crucial problem for understanding these diseases and designing the drug targets. Our deep learning model with two-dimensional convolutional neural network and position-specific scoring matrix profiles could identify GTP binding residues with achieved sensitivity of 92.3%, specificity of 99.8%, accuracy of 99.5%, and MCC of 0.92 for independent dataset. Compared with other published works, this approach achieved a significant improvement. Throughout the proposed study, we provide an effective model for predicting GTP binding sites in Rab proteins and a basis for further research that can apply deep learning in bioinformatics, especially in nucleotide binding site prediction.

摘要

深度学习已越来越广泛地用于解决各个领域的众多问题,并具有最先进的性能。它也可应用于生物信息学,以减少对特征提取的需求并实现高性能。本研究试图利用深度学习预测Rab蛋白中的GTP结合位点,这是生命科学中最重要的分子功能之一。Rab蛋白中GTP结合位点的功能丧失与多种人类疾病(脉络膜视网膜病变、智力残疾、癌症、帕金森病)有关。因此,创建一个精确的模型来识别它们的功能是理解这些疾病和设计药物靶点的关键问题。我们的深度学习模型结合二维卷积神经网络和位置特异性评分矩阵概况,对于独立数据集,能够识别GTP结合残基,灵敏度达到92.3%,特异性达到99.8%,准确率达到99.5%,马修斯相关系数达到0.92。与其他已发表的研究相比,该方法取得了显著改进。在整个所提出的研究中,我们提供了一个预测Rab蛋白中GTP结合位点的有效模型,并为在生物信息学中,特别是在核苷酸结合位点预测中应用深度学习的进一步研究奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验