Suppr超能文献

使用二维卷积神经网络预测膜蛋白中的ATP结合位点。

Prediction of ATP-binding sites in membrane proteins using a two-dimensional convolutional neural network.

作者信息

Nguyen Trinh-Trung-Duong, Le Nguyen-Quoc-Khanh, Kusuma Rosdyana Mangir Irawan, Ou Yu-Yen

机构信息

Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan.

School of Humanities, Nanyang Technological University, 48 Nanyang Ave, 6397983, Singapore.

出版信息

J Mol Graph Model. 2019 Nov;92:86-93. doi: 10.1016/j.jmgm.2019.07.003. Epub 2019 Jul 15.

Abstract

Membrane proteins, the most important drug targets, account for around 30% of total proteins encoded by the genome of living organisms. An important role of these proteins is to bind adenosine triphosphate (ATP), facilitating crucial biological processes such as metabolism and cell signaling. There are several reports elucidating ATP-binding sites within proteins. However, such studies on membrane proteins are limited. Our prediction tool, DeepATP, combines evolutionary information in the form of Position Specific Scoring Matrix and two-dimensional Convolutional Neural Network to predict ATP-binding sites in membrane proteins with an MCC of 0.89 and an AUC of 99%. Compared to recently published ATP-binding site predictors and classifiers that use traditional machine learning algorithms, our approach performs significantly better. We suggest this method as a reliable tool for biologists for ATP-binding site prediction in membrane proteins.

摘要

膜蛋白是最重要的药物靶点,约占生物体基因组编码的总蛋白的30%。这些蛋白的一个重要作用是结合三磷酸腺苷(ATP),促进新陈代谢和细胞信号传导等关键生物学过程。有几篇报道阐明了蛋白质中的ATP结合位点。然而,关于膜蛋白的此类研究有限。我们的预测工具DeepATP结合了位置特异性评分矩阵形式的进化信息和二维卷积神经网络,以预测膜蛋白中的ATP结合位点,马修斯相关系数为0.89,曲线下面积为99%。与最近发表的使用传统机器学习算法的ATP结合位点预测器和分类器相比,我们的方法表现明显更好。我们建议将此方法作为生物学家预测膜蛋白中ATP结合位点的可靠工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验