Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651.
Department of Anesthesiology, Division of Molecular Medicine, University of California, Los Angeles, CA 90095-7115.
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6172-6180. doi: 10.1073/pnas.1822176116. Epub 2019 Mar 13.
Heart performance relies on highly coordinated excitation-contraction (EC) coupling, and defects in this critical process may be exacerbated by additional genetic defects and/or environmental insults to cause eventual heart failure. Here we report a regulatory pathway consisting of the RNA binding protein RBFox2, a stress-induced microRNA miR-34a, and the essential EC coupler JPH2. In this pathway, initial cardiac defects diminish RBFox2 expression, which induces transcriptional repression of miR-34a, and elevated miR-34a targets to impair EC coupling, which further manifests heart dysfunction, leading to progressive heart failure. The key contribution of miR-34a to this process is further established by administrating its mimic, which is sufficient to induce cardiac defects, and by using its antagomir to alleviate RBFox2 depletion-induced heart dysfunction. These findings elucidate a potential feed-forward mechanism to account for a critical transition to cardiac decompensation and suggest a potential therapeutic avenue against heart failure.
心脏功能依赖于高度协调的兴奋-收缩(EC)偶联,而这一关键过程中的缺陷可能会因额外的遗传缺陷和/或环境损伤而加剧,最终导致心力衰竭。在这里,我们报告了一个由 RNA 结合蛋白 RBFox2、应激诱导的 microRNA miR-34a 和必需的 EC 偶联蛋白 JPH2 组成的调控途径。在这个途径中,最初的心脏缺陷会降低 RBFox2 的表达,从而诱导 miR-34a 的转录抑制,而升高的 miR-34a 靶标则损害 EC 偶联,进一步表现为心脏功能障碍,导致进行性心力衰竭。通过给予其模拟物足以诱导心脏缺陷,以及使用其反义寡核苷酸来减轻 RBFox2 耗竭诱导的心脏功能障碍,进一步证实了 miR-34a 在这一过程中的关键作用。这些发现阐明了一种潜在的正反馈机制,解释了心脏失代偿的关键转变,并为心力衰竭的潜在治疗途径提供了依据。