Boone-Kukoyi Zainab, Moody Kaliyah, Nwawulu Chinenye, Ariori Rukayat, Ajifa Hillary, Guy Janelle A, Lansiquot Carisse, Ozturk Birol, McLemore Gabrielle L, Bonyi Enock, Aslan Kadir
Department of Civil Engineering, Department of Physics and Engineering Physics, and Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States.
ACS Omega. 2019 Feb 28;4(2):4417-4428. doi: 10.1021/acsomega.8b03497.
In this paper, we tested a hypothesis that the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique, based on the combined use of low-power medical microwave heating (MWH) and gold nanoparticles (Au NPs), can be used to decrystallize laboratory-prepared monosodium urate monohydrate crystal aggregate (pseudo-tophus) placed in three-dimensional (3D) synthetic human joint models. To simulate a potential treatment of chronic tophaceous gout using the MAMAD technique, we used three different 3D synthetic human joint models and assessed the percent mass reduction (PMR, i.e., decrystallization) of pseudo-tophus and microwave-induced synthetic skin patch damage after MAMAD sessions (a MAMAD session = 120 s of MWH in the presence of Au NPs). Our three synthetic joint models are: Model 1: Application of seven MAMAD sessions in a closed synthetic joint with a pseudo-bursa containing a pseudo-tophus submerged in a solution of 20 nm Au NPs followed by dehydration of pseudo-tophus after each MAMAD session to assess PMR. Model 2: Application of seven MAMAD sessions in a closed or open synthetic joint with a pseudo-bursa containing a pseudo-tophus submerged in a solution of Au NPs followed by intermittent dehydration of pseudo-tophus after seven MAMAD sessions to assess PMR. Model 3: Application of 18 MAMAD sessions in a rotated closed synthetic joint (three sides are heated separately) with a pseudo-bursa containing a pseudo-tophus submerged in a solution of Au NPs followed by dehydration after every three MAMAD sessions to assess PMR. After a single MAMAD session, pseudo-tophus exposed to MWH and Au NPs had an average PMR of 8.30% (up to an overall PMR of 15%), and microwave-induced damage to the synthetic skin can be controlled by the use of a sacrificial skin sample and by adjusting the duration and the number of the MAMAD sessions. Computational electromagnetic simulations predict a 10% absorption of electric field by the pseudo-tophus placed in the synthetic joint models, which led us to conclude that a medical microwave source with higher power than 20 W can potentially be used with the MAMAD technique.
在本文中,我们验证了一个假设:基于低功率医用微波加热(MWH)和金纳米颗粒(Au NPs)联合使用的金属辅助及微波加速脱结晶(MAMAD)技术,可用于使置于三维(3D)合成人体关节模型中的实验室制备的一水合尿酸钠晶体聚集体(假痛风石)脱结晶。为了模拟使用MAMAD技术对慢性痛风石性痛风进行潜在治疗,我们使用了三种不同的3D合成人体关节模型,并评估了MAMAD疗程(一个MAMAD疗程 = 在存在Au NPs的情况下进行120秒MWH)后假痛风石的质量减少百分比(PMR,即脱结晶)以及微波引起的合成皮肤贴片损伤。我们的三种合成关节模型如下:模型1:在一个封闭的合成关节中应用七个MAMAD疗程,该关节带有一个假滑囊,其中含有浸没在20纳米Au NPs溶液中的假痛风石,在每个MAMAD疗程后对假痛风石进行脱水以评估PMR。模型2:在一个带有假滑囊的封闭或开放合成关节中应用七个MAMAD疗程,假滑囊中含有浸没在Au NPs溶液中的假痛风石,在七个MAMAD疗程后对假痛风石进行间歇性脱水以评估PMR。模型3:在一个旋转的封闭合成关节(三边分别加热)中应用18个MAMAD疗程,该关节带有一个假滑囊,其中含有浸没在Au NPs溶液中的假痛风石,每三个MAMAD疗程后进行脱水以评估PMR。在单个MAMAD疗程后,暴露于MWH和Au NPs的假痛风石的平均PMR为8.30%(总体PMR高达15%),并且通过使用牺牲性皮肤样本以及调整MAMAD疗程的持续时间和次数,可以控制微波对合成皮肤的损伤。计算电磁模拟预测,置于合成关节模型中的假痛风石对电场的吸收率为10%,这使我们得出结论,功率高于20 W的医用微波源可能与MAMAD技术一起使用。