Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology , University of Science and Technology Beijing , Beijing 100083 , China.
Anal Chem. 2019 Apr 2;91(7):4307-4311. doi: 10.1021/acs.analchem.9b00376. Epub 2019 Mar 15.
The 3D cell spheroid is an emerging tool that allows better recapitulating of in vivo scenarios with multiple factors such as tissue-like morphology and membrane protein expression that intimately coordinates with enzyme activity, thus providing a psychological environment for tumorigenesis study. For analyzing different spheroids, conventional optical imaging may be hampered by the need for fluorescent labeling, which could cause toxicity side effects. As an alternative approach, scanning electrochemical microscopy (SECM) enables label-free imaging. However, SECM for cell spheroid imaging is currently suffering from incapability of systematically analyzing the cell aggregates from spheroid generation, electrochemical signal gaining, and the gene expression on different individual cell spheroids. Herein, we developed a top-removable microfluidic device for cell aggregate yielding and SECM imaging methodology to analyze heterotypic 3D cell spheroids on a single device. This technique allows not only on-chip culturing of cell aggregates but also SECM imaging of the spheroids after opening the chip and subsequent qPCR assay of corresponding clusters. Through employment of the micropit arrays (85 × 4) with a top withdrawable microfluidic layer, uniformly sized breast tumor cell and fibroblast spheroids can be simultaneously produced on a single device. By leveraging voltage-switching mode SECM at different potentials of dual mediators, we evaluated alkaline phosphatase without disturbance of substrate morphology for distinguishing the tumor aggregates from stroma. Moreover, this method also enables gene expression profiling on individual tumor or stromal spheroids. Therefore, this new strategy can seamlessly bridge SECM measurements and molecular biological analysis.
三维细胞球体是一种新兴的工具,它可以更好地模拟体内环境,包括组织样形态和膜蛋白表达等多种因素,这些因素与酶活性密切协调,从而为肿瘤发生研究提供了心理环境。为了分析不同的球体,传统的光学成像可能会受到荧光标记的限制,这可能会导致毒性副作用。作为一种替代方法,扫描电化学显微镜(SECM)可以实现无标记成像。然而,用于细胞球体成像的 SECM 目前存在无法系统地分析球体生成、电化学信号获取以及不同个体细胞球体上基因表达的能力。在此,我们开发了一种可移除顶部的微流控装置,用于产生细胞聚集体和 SECM 成像方法,以在单个设备上分析异质 3D 细胞球体。该技术不仅允许在芯片上培养细胞聚集体,还可以在打开芯片后对球体进行 SECM 成像,并对相应的簇进行 qPCR 分析。通过使用带有可移除顶部的微流控层的微孔阵列(85×4),可以在单个设备上同时产生均匀大小的乳腺癌细胞和成纤维细胞球体。通过在双介体的不同电位下利用电压切换模式 SECM,我们评估了碱性磷酸酶,而不会干扰底物形态,从而区分肿瘤聚集体和基质。此外,该方法还可以对单个肿瘤或基质球体进行基因表达谱分析。因此,这种新策略可以无缝桥接 SECM 测量和分子生物学分析。