Suppr超能文献

基于车联网众包的隐私保护交通监控方案

A Privacy-Preserving Traffic Monitoring Scheme via Vehicular Crowdsourcing.

机构信息

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.

Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA..

出版信息

Sensors (Basel). 2019 Mar 13;19(6):1274. doi: 10.3390/s19061274.

Abstract

The explosive number of vehicles has given rise to a series of traffic problems, such as traffic congestion, road safety, and fuel waste. Collecting vehicles' speed information is an effective way to monitor the traffic conditions and avoid vehicles' congestion, however it may threaten vehicles' location and trajectory privacy. Motivated by the fact that traffic monitoring does not need to know each individual vehicle's speed and the average speed would be sufficient, we propose a privacy-preserving traffic monitoring (PPTM) scheme to aggregate vehicles' speeds at different locations. In PPTM, the roadside unit (RSU) collects vehicles' speed information at multiple road segments, and further cooperates with a service provider to calculate the average speed information for every road segment. To preserve vehicles' privacy, both homomorphic Paillier cryptosystem and super-increasing sequence are adopted. A comprehensive security analysis indicates that the proposed PPTM can preserve vehicles' identities, speeds, locations, and trajectories privacy from being disclosed. In addition, extensive simulations are conducted to validate the effectiveness and efficiency of the proposed PPTM scheme.

摘要

车辆数量的爆炸式增长引发了一系列交通问题,如交通拥堵、道路安全和燃料浪费。收集车辆速度信息是监测交通状况和避免车辆拥堵的有效方法,但这可能会威胁到车辆的位置和轨迹隐私。鉴于交通监测不需要知道每辆车的速度,并且平均速度就足够了,我们提出了一种隐私保护交通监测(PPTM)方案,以聚合不同位置的车辆速度。在 PPTM 中,路边单元(RSU)在多个路段收集车辆速度信息,并进一步与服务提供商合作,计算每个路段的平均速度信息。为了保护车辆的隐私,采用了同态 Paillier 密码系统和超递增序列。全面的安全分析表明,所提出的 PPTM 可以保护车辆的身份、速度、位置和轨迹隐私不被泄露。此外,还进行了广泛的模拟验证了所提出的 PPTM 方案的有效性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b353/6472181/9794a2085733/sensors-19-01274-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验