Kang Byeongkeun, Nguyen Truong Q
IEEE Trans Image Process. 2019 Mar 14. doi: 10.1109/TIP.2019.2905081.
We present a random forest framework that learns the weights, shapes, and sparsities of feature representations for real-time semantic segmentation. Typical filters (kernels) have predetermined shapes and sparsities and learn only weights. A few feature extraction methods fix weights and learn only shapes and sparsities. These predetermined constraints restrict learning and extracting optimal features. To overcome this limitation, we propose an unconstrained representation that is able to extract optimal features by learning weights, shapes, and sparsities. We, then, present the random forest framework that learns the flexible filters using an iterative optimization algorithm and segments input images using the learned representations. We demonstrate the effectiveness of the proposed method using a hand segmentation dataset for hand-object interaction and using two semantic segmentation datasets. The results show that the proposed method achieves real-time semantic segmentation using limited computational and memory resources.
我们提出了一种随机森林框架,用于学习实时语义分割的特征表示的权重、形状和稀疏性。典型的滤波器(内核)具有预先确定的形状和稀疏性,并且只学习权重。一些特征提取方法固定权重,只学习形状和稀疏性。这些预先确定的约束限制了学习和提取最优特征。为了克服这一限制,我们提出了一种无约束表示,它能够通过学习权重、形状和稀疏性来提取最优特征。然后,我们提出了一种随机森林框架,该框架使用迭代优化算法学习灵活的滤波器,并使用学习到的表示对输入图像进行分割。我们使用用于手与物体交互的手部分割数据集以及两个语义分割数据集来证明所提出方法的有效性。结果表明,所提出的方法使用有限的计算和内存资源实现了实时语义分割。