Suppr超能文献

用于估计连续治疗效应函数的联合充分降维

Joint sufficient dimension reduction for estimating continuous treatment effect functions.

作者信息

Huang Ming-Yueh, Chan Kwun Chuen Gary

机构信息

Institute of Statistical Science, Academia Sinica, Taiwan.

Department of Biostatistics, University of Washington, U.S.A.

出版信息

J Multivar Anal. 2018 Nov;168:48-62. doi: 10.1016/j.jmva.2018.07.005. Epub 2018 Jul 10.

Abstract

The estimation of continuous treatment effect functions using observational data often requires parametric specification of the effect curves, the conditional distributions of outcomes and treatment assignments given multi-dimensional covariates. While nonparametric extensions are possible, they typically suffer from the curse of dimensionality. Dimension reduction is often inevitable and we propose a sufficient dimension reduction framework to balance parsimony and flexibility. The joint central subspace can be estimated at a -rate without fixing its dimension in advance, and the treatment effect function is estimated by averaging local estimates of a reduced dimension. Asymptotic properties are studied. Unlike binary treatments, continuous treatments require multiple smoothing parameters of different asymptotic orders to borrow different facets of information, and their joint estimation is proposed by a non-standard version of the infinitesimal jackknife.

摘要

使用观测数据估计连续治疗效应函数通常需要对效应曲线、给定多维协变量时结果和治疗分配的条件分布进行参数化设定。虽然非参数扩展是可行的,但它们通常会受到维度诅咒的影响。降维往往不可避免,我们提出了一个充分降维框架来平衡简约性和灵活性。联合中心子空间可以以 - 速率进行估计,而无需事先固定其维度,并且通过对降维后的局部估计进行平均来估计治疗效应函数。我们研究了渐近性质。与二元治疗不同,连续治疗需要多个具有不同渐近阶的平滑参数来借用不同方面的信息,并且通过一种非标准版本的无穷小刀切法来进行它们的联合估计。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验