Englert Christoph, Galler Peter, Harris Philip, Spannowsky Michael
1SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ UK.
2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
Eur Phys J C Part Fields. 2019;79(1):4. doi: 10.1140/epjc/s10052-018-6511-8. Epub 2019 Jan 3.
Machine Learning is a powerful tool to reveal and exploit correlations in a multi-dimensional parameter space. Making predictions from such correlations is a highly non-trivial task, in particular when the details of the underlying dynamics of a theoretical model are not fully understood. Using adversarial networks, we include a priori known sources of systematic and theoretical uncertainties during the training. This paves the way to a more reliable event classification on an event-by-event basis, as well as novel approaches to perform parameter fits of particle physics data. We demonstrate the benefits of the method explicitly in an example considering effective field theory extensions of Higgs boson production in association with jets.
机器学习是揭示和利用多维参数空间中相关性的强大工具。基于此类相关性进行预测是一项极具挑战性的任务,尤其是当理论模型潜在动力学的细节尚未完全理解时。通过使用对抗网络,我们在训练过程中纳入了先验已知的系统和理论不确定性来源。这为逐个事件进行更可靠的事件分类以及对粒子物理数据进行参数拟合的新方法铺平了道路。我们在一个考虑希格斯玻色子与喷注关联产生的有效场论扩展的示例中明确展示了该方法的优势。