Suppr超能文献

基于大数据机器学习的算法决策:透明度能否恢复问责制?

Algorithmic Decision-Making Based on Machine Learning from Big Data: Can Transparency Restore Accountability?

作者信息

de Laat Paul B

机构信息

University of Groningen, Groningen, Netherlands.

出版信息

Philos Technol. 2018;31(4):525-541. doi: 10.1007/s13347-017-0293-z. Epub 2017 Nov 12.

Abstract

Decision-making assisted by algorithms developed by machine learning is increasingly determining our lives. Unfortunately, full opacity about the process is the norm. Would transparency contribute to restoring accountability for such systems as is often maintained? Several objections to full transparency are examined: the loss of privacy when datasets become public, the perverse effects of disclosure of the very algorithms themselves ("gaming the system" in particular), the potential loss of companies' competitive edge, and the limited gains in answerability to be expected since sophisticated algorithms usually are inherently opaque. It is concluded that, at least presently, full transparency for oversight bodies alone is the only feasible option; extending it to the public at large is normally not advisable. Moreover, it is argued that algorithmic decisions preferably should become more understandable; to that effect, the models of machine learning to be employed should either be interpreted ex post or be interpretable by design ex ante.

摘要

由机器学习开发的算法辅助的决策越来越多地决定着我们的生活。不幸的是,整个过程完全不透明是常态。透明度是否会有助于恢复此类系统的问责制,正如人们常认为的那样?本文探讨了对完全透明的一些反对意见:数据集公开时隐私的丧失、算法本身披露的不良影响(特别是“操纵系统”)、公司竞争优势的潜在丧失,以及由于复杂算法通常本质上不透明而预期在可问责性方面的有限收益。结论是,至少目前,仅对监督机构完全透明是唯一可行的选择;将其扩展至广大公众通常并不可取。此外,有人认为算法决策最好应变得更易于理解;为此,所采用的机器学习模型应要么事后可解释,要么事前设计即可解释。

相似文献

4
Ethical machines: The human-centric use of artificial intelligence.合乎伦理的机器:以人类为中心的人工智能应用
iScience. 2021 Mar 3;24(3):102249. doi: 10.1016/j.isci.2021.102249. eCollection 2021 Mar 19.
5
Perception of fairness in algorithmic decisions: Future developers' perspective.算法决策中的公平感:未来开发者的视角。
Patterns (N Y). 2021 Nov 3;3(1):100380. doi: 10.1016/j.patter.2021.100380. eCollection 2022 Jan 14.
7
Algorithmic accountability.算法问责制。
Philos Trans A Math Phys Eng Sci. 2018 Sep 13;376(2128). doi: 10.1098/rsta.2017.0362.
10
Robust Transparency Against Model Inversion Attacks.针对模型反演攻击的强大透明度
IEEE Trans Dependable Secure Comput. 2021 Sep-Oct;18(5):2061-2073. doi: 10.1109/tdsc.2020.3019508. Epub 2020 Aug 26.

引用本文的文献

7
Machine Learning and Ethics.机器学习与伦理。
Acta Neurochir Suppl. 2022;134:251-256. doi: 10.1007/978-3-030-85292-4_28.
10
Anomaly Detection in COVID-19 Time-Series Data.新冠疫情时间序列数据中的异常检测
SN Comput Sci. 2021;2(4):279. doi: 10.1007/s42979-021-00658-w. Epub 2021 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验