Suppr超能文献

通过光化学合成1-氨基降冰片烷提供一种新型苯胺生物电子等排体。

Providing a New Aniline Bioisostere through the Photochemical Production of 1-Aminonorbornanes.

作者信息

Staveness Daryl, Sodano Taylor M, Li Kangjun, Burnham Elizabeth A, Jackson Klarissa D, Stephenson Corey R J

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Pharmaceutical Sciences, Lipscomb University, Nashville, TN 37204, USA.

出版信息

Chem. 2019 Jan 10;5(1):215-226. doi: 10.1016/j.chempr.2018.10.017. Epub 2018 Nov 21.

Abstract

This report describes the photochemical conversion of aminocyclopropanes into 1-aminonorbornanes via formal [3+2] cycloadditions initiated by homolytic fragmentation of amine radical cation intermediates. Aligning with the modern movement toward -rich motifs in drug discovery, this strategy provides access to a diverse array of substitution patterns on this saturated carbocyclic framework while offering the robust functional group tolerance (e.g. -OH, -NHBoc) necessary for further derivatization. Evaluating the metabolic stability of selected morpholine-based 1-aminonorbornanes demonstrated a low propensity for oxidative processing and no proclivity toward reactive metabolite formation, suggesting a potential bioisosteric role for 1-aminonorbornanes. Continuous flow processing allowed for efficient operation on gram-scale, providing promise for translation to industrially-relevant scales. This methodology only requires low loadings of a commercially-available, visible light-active photocatalyst and a simple salt, thus it stays true to sustainability goals while readily delivering saturated building blocks that can reduce metabolic susceptibility within drug development programs.

摘要

本报告描述了通过胺自由基阳离子中间体的均裂裂解引发的形式上的[3+2]环加成反应,将氨基环丙烷光化学转化为1-氨基降冰片烷。与药物发现中富含碳的基序的现代趋势相一致,该策略提供了在这个饱和碳环骨架上获得各种取代模式的途径,同时提供了进一步衍生化所需的强大官能团耐受性(例如-OH、-NHBoc)。对选定的吗啉基1-氨基降冰片烷的代谢稳定性评估表明,其氧化处理倾向较低,且没有形成反应性代谢物的倾向,这表明1-氨基降冰片烷具有潜在的生物电子等排体作用。连续流动处理允许在克级规模上高效操作,为扩大到工业相关规模提供了希望。这种方法只需要低负载量的市售可见光活性光催化剂和一种简单的盐,因此它符合可持续发展目标,同时能够轻松提供可以降低药物开发项目中代谢敏感性的饱和结构单元。

相似文献

1
Providing a New Aniline Bioisostere through the Photochemical Production of 1-Aminonorbornanes.
Chem. 2019 Jan 10;5(1):215-226. doi: 10.1016/j.chempr.2018.10.017. Epub 2018 Nov 21.
2
Photochemically derived 1-aminonorbornanes provide structurally unique succinate dehydrogenase inhibitors with and activity.
Cell Rep Phys Sci. 2021 Sep 22;2(9). doi: 10.1016/j.xcrp.2021.100548. Epub 2021 Aug 19.
3
Exploiting Imine Photochemistry for Masked N-Centered Radical Reactivity.
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):19000-19006. doi: 10.1002/anie.201909492. Epub 2019 Nov 8.
4
Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
Acc Chem Res. 2016 Oct 18;49(10):2295-2306. doi: 10.1021/acs.accounts.6b00270. Epub 2016 Aug 16.
5
Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond.
Acc Chem Res. 2016 Sep 20;49(9):1911-23. doi: 10.1021/acs.accounts.6b00254. Epub 2016 Aug 23.
6
Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis.
Acc Chem Res. 2015 May 19;48(5):1474-84. doi: 10.1021/acs.accounts.5b00068. Epub 2015 May 7.
7
Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
Acc Chem Res. 2016 Oct 18;49(10):2307-2315. doi: 10.1021/acs.accounts.6b00280. Epub 2016 Aug 9.
8
When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
Acc Chem Res. 2020 May 19;53(5):1066-1083. doi: 10.1021/acs.accounts.0c00090. Epub 2020 Apr 14.
9
Metal-Free Photoredox Catalyzed Cyclization of O-(2,4-Dinitrophenyl)oximes to Phenanthridines.
Molecules. 2016 Dec 8;21(12):1690. doi: 10.3390/molecules21121690.
10
Exploration of C-H Transformations of Aldehyde Hydrazones: Radical Strategies and Beyond.
Acc Chem Res. 2018 Feb 20;51(2):484-495. doi: 10.1021/acs.accounts.7b00565. Epub 2018 Jan 23.

引用本文的文献

5
Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space.
Chem Sci. 2023 Aug 30;14(36):9885-9891. doi: 10.1039/d3sc03083k. eCollection 2023 Sep 20.
7
Photochemical Intermolecular [3σ + 2σ]-Cycloaddition for the Construction of Aminobicyclo[3.1.1]heptanes.
J Am Chem Soc. 2022 Dec 28;144(51):23685-23690. doi: 10.1021/jacs.2c11501. Epub 2022 Dec 15.
8
Illuminating Photoredox Catalysis.
Trends Chem. 2019 Apr;1(1):111-125. doi: 10.1016/j.trechm.2019.01.008. Epub 2019 Feb 22.
9
Formal Cycloadditions Driven by the Homolytic Opening of Strained, Saturated Ring Systems.
Angew Chem Int Ed Engl. 2023 Jan 23;62(4):e202213003. doi: 10.1002/anie.202213003. Epub 2022 Nov 29.
10
Strain-Release [2π + 2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer.
J Am Chem Soc. 2022 May 11;144(18):7988-7994. doi: 10.1021/jacs.2c02976. Epub 2022 Apr 27.

本文引用的文献

2
Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis.
Int J Mol Sci. 2017 May 9;18(5):1018. doi: 10.3390/ijms18051018.
3
Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines.
Science. 2017 Feb 17;355(6326):727-730. doi: 10.1126/science.aal3010.
4
Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design.
Drug Discov Today. 2017 May;22(5):751-756. doi: 10.1016/j.drudis.2016.11.018. Epub 2016 Nov 27.
5
The Prowess of Photogenerated Amine Radical Cations in Cascade Reactions: From Carbocycles to Heterocycles.
Acc Chem Res. 2016 Sep 20;49(9):1957-68. doi: 10.1021/acs.accounts.6b00263. Epub 2016 Aug 18.
6
Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
Acc Chem Res. 2016 Oct 18;49(10):2295-2306. doi: 10.1021/acs.accounts.6b00270. Epub 2016 Aug 16.
7
Photoredox Catalysis in Organic Chemistry.
J Org Chem. 2016 Aug 19;81(16):6898-926. doi: 10.1021/acs.joc.6b01449. Epub 2016 Aug 1.
9
Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere.
Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3580-5. doi: 10.1002/anie.201510675. Epub 2016 Feb 5.
10
Reactive Metabolites: Current and Emerging Risk and Hazard Assessments.
Chem Res Toxicol. 2016 Apr 18;29(4):505-33. doi: 10.1021/acs.chemrestox.5b00410. Epub 2016 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验