Suppr超能文献

基于耦合有限元-光滑粒子流体动力学的硅片抛光数值实验研究

Numerical-experimental study on the polishing of silicon wafers using coupled finite element-smoothed particle hydrodynamics.

作者信息

Mosavat Mohammad, Rahimi Abdolreza

出版信息

Appl Opt. 2019 Feb 20;58(6):1569-1576. doi: 10.1364/AO.58.001569.

Abstract

The quality and surface roughness of silicon wafers significantly affects the efficiency and quality of follow-up processing. Smoothed particle hydrodynamics is a robust meshless method with good self-adaptability that can be used in the simulation of the polishing process, which has high speed deformation characteristics. In this study, the coupled algorithm of finite element and surface particle hydrodynamic (SPH) has been used to simulate the surface polishing of monocrystalline silicon wafers with a magnetic abrasive finishing process. The effects of machining gap, abrasive particle size, and rotational speed on surface roughness are comprehensively analyzed. In addition, several experiments are carried out on a 3-in.-diameter circular silicon wafer and the results are compared with the simulation results. Our findings show that the decreases in abrasive particle size and also increases in rotational speed significantly deteriorate the surface roughness of the silicon wafer. The obtained results revealed that the machining gap has an optimum condition in which the minimum surface roughness is achieved. According to our results, the best surface roughness value achieved is 63 nm.

摘要

硅片的质量和表面粗糙度会显著影响后续加工的效率和质量。光滑粒子流体动力学是一种强大的无网格方法,具有良好的自适应性,可用于模拟具有高速变形特性的抛光过程。在本研究中,采用有限元与表面粒子流体动力学(SPH)的耦合算法,对采用磁性研磨工艺的单晶硅片表面抛光进行了模拟。综合分析了加工间隙、磨粒尺寸和转速对表面粗糙度的影响。此外,对直径为3英寸的圆形硅片进行了多项实验,并将结果与模拟结果进行了比较。我们的研究结果表明,磨粒尺寸减小以及转速增加会显著恶化硅片的表面粗糙度。所得结果表明,加工间隙存在一个能实现最小表面粗糙度的最佳条件。根据我们的结果,实现的最佳表面粗糙度值为63纳米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验