Department of Computer Science, Iowa State University, Ames, IA 50011, United States of America. Program of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, United States of America.
Phys Biol. 2019 Apr 23;16(4):046003. doi: 10.1088/1478-3975/ab1051.
Shape had been intuitively recognized to play a dominant role in determining the global motion patterns of bio-molecular assemblies. However, it is not clear exactly how shape determines the motion patterns. What about the local interactions that hold a structure together to a certain shape? The contributions of global shape and local interactions usually mix together and are difficult to tease part. In this work, we use symmetry to elucidate the distinct roles of global shape and local interactions in protein dynamics. Symmetric complexes provide an ideal platform for this task since in them the effects of local interactions and global shape are separable, allowing their distinct roles to be identified. Our key findings based on symmetric assemblies are: (i) the motion patterns of each subunit are determined primarily by intra-subunit interactions (IRSi), and secondarily by inter-subunit interactions (IESi); (ii) the motion patterns of the whole assembly are fully dictated by the global symmetry/shape and have nothing to do with local iESi or IRSi. This is followed by a discussion on how the findings may be generalized to complexes in any shape, with or without symmetry.
形状一直被直观地认为在决定生物分子组装体的整体运动模式方面起着主导作用。然而,目前尚不清楚形状究竟是如何决定运动模式的。那么,将结构保持在特定形状的局部相互作用又如何呢?全局形状和局部相互作用的贡献通常混合在一起,很难将它们区分开来。在这项工作中,我们利用对称性来阐明全局形状和局部相互作用在蛋白质动力学中的不同作用。对称复合物为这项任务提供了一个理想的平台,因为在它们中,局部相互作用和全局形状的影响是可分离的,从而可以确定它们的不同作用。我们基于对称组装体得出的主要发现有:(i)每个亚基的运动模式主要由亚基内相互作用(IRSi)决定,其次由亚基间相互作用(IESi)决定;(ii)整个组装体的运动模式完全由全局对称性/形状决定,与局部 iESi 或 IRSi 无关。随后,我们讨论了这些发现如何推广到任何形状的复合物,无论是否具有对称性。