Perrakis George, Tsilipakos Odysseas, Kenanakis George, Kafesaki Maria, Soukoulis Costas M, Economou Eleftherios N
Opt Express. 2019 Mar 4;27(5):6842-6850. doi: 10.1364/OE.27.006842.
Structuring metal surfaces on the nanoscale has been shown to alter their fundamental processes like reflection or absorption by supporting surface plasmon resonances. Here, we propose metal films with subwavelength rectangular nanostructuring that perfectly absorb the incident radiation in the optical regime. The structures are fabricated with low-cost nanoimprint lithography and thus constitute an appealing alternative to elaborate absorber designs with complex meta-atoms or multilayer structuring. We conduct a thorough numerical analysis to gain physical insight on how the key structural parameters affect the optical response and identify the designs leading to broad spectral and angular bandwidths, both of which are highly desirable in practical absorber applications. Subsequently, we fabricate and measure the structures with an FT-IR spectrometer demonstrating very good agreement with theory. Finally, we assess the performance of the proposed structures as sensing devices by quantifying the dependence of the absorption peak frequency position on the superstrate material.
在纳米尺度上构建金属表面已被证明可通过支持表面等离子体共振来改变其诸如反射或吸收等基本过程。在此,我们提出具有亚波长矩形纳米结构的金属薄膜,其在光学范围内能完美吸收入射辐射。这些结构采用低成本的纳米压印光刻技术制造,因此是具有复杂元原子或多层结构的精细吸收体设计的一个有吸引力的替代方案。我们进行了全面的数值分析,以深入了解关键结构参数如何影响光学响应,并确定能实现宽光谱和角带宽的设计,这两者在实际吸收体应用中都是非常理想的。随后,我们用傅里叶变换红外光谱仪制造并测量了这些结构,结果表明与理论非常吻合。最后,我们通过量化吸收峰频率位置对上层材料的依赖性,评估了所提出结构作为传感装置的性能。