Suppr超能文献

工程化运动发酵单胞菌以实现稳健的纤维素乙醇生产。

Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production.

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062, China.

出版信息

Trends Biotechnol. 2019 Sep;37(9):960-972. doi: 10.1016/j.tibtech.2019.02.002. Epub 2019 Mar 13.

Abstract

Great effort has been devoted to engineering Saccharomyces cerevisiae with pentose metabolism through the oxido-reductase pathway for cellulosic ethanol production, but intrinsic cofactor imbalance is observed, which substantially compromises ethanol yield. Zymomonas mobilis not only can be engineered for pentose metabolism through the isomerase pathway without cofactor imbalance but also metabolizes sugar through the Entner-Doudoroff pathway with less ATP and biomass produced for more sugar to be used for ethanol production. Moreover, the availabilities of genome sequence information for multiple Z. mobilis strains and advanced genetics tools have laid a solid foundation for engineering this species, and the self-flocculation of the bacterial cells also presents significant advantages for bioprocess engineering. Here, we highlight some of recent advances in these aspects.

摘要

人们为了通过氧化还原酶途径工程化酿酒酵母以实现木质纤维素乙醇生产而投入了大量精力,但是观察到内在辅酶失衡,这极大地降低了乙醇产率。运动发酵单胞菌不仅可以通过异构酶途径进行戊糖代谢而不会出现辅酶失衡,而且还可以通过 Entner-Doudoroff 途径代谢糖,产生较少的 ATP 和生物质,从而有更多的糖可用于乙醇生产。此外,多个运动发酵单胞菌菌株的基因组序列信息的可用性和先进的遗传工具为该物种的工程改造奠定了坚实的基础,细菌细胞的自絮凝也为生物工艺工程带来了显著的优势。在这里,我们重点介绍了这些方面的一些最新进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验