Suppr超能文献

关于作物产量和需水量计算的准确性:用于综合评估的逐日、半周和每周时间步长的基于过程的作物模型。

On the accuracy of crop production and water requirement calculations: Process-based crop modeling at daily, semi-weekly, and weekly time steps for integrated assessments.

机构信息

Department of Civil and Environmental Engineering, University of Alberta, 9211 - 116 Street NW, Edmonton, Alberta, T6G 1H9, Canada.

出版信息

J Environ Manage. 2019 May 15;238:460-472. doi: 10.1016/j.jenvman.2019.03.030. Epub 2019 Mar 13.

Abstract

Integrated models are crucial for evaluation of the complex interactions and trade-offs among policy choices and socioeconomic, technical, and environmental processes. The use of process-based crop models as components of integrated models offers the possibility of significantly improving such analyses; however, challenges exist in terms of simulation scales and degree of integration. Therefore, this study evaluates the applicability of coarser-than-daily simulation time steps to simulate long-term crop yields in integrated models, and the impacts of aggregated weather input data on yields for a water-driven crop-process model based on the FAO AquaCrop model. We ran simulations at daily, semi-weekly, and weekly time steps in conjunction with coarser temporal resolution (weekly) weather input data for three crops in four locations over ten years to represent a range of crops and growing environments. Simulation results were compared to a reference case from AquaCrop using daily time step with daily weather data. Model skill for simulating crop biomass and yield and water demands was assessed statistically for each of these four hypothetical farms. Visual representations were also used to compare simulated soil moisture, crop canopy, and actual evapotranspiration values. Weekly climate data led to overestimation of crop biomass and yield regardless of the time step used. High agreements and low bias errors were realized for crop production and water estimates at daily and semi-weekly time steps, whereas weekly simulations showed poorer performance. Longer time steps intensified the impacts of weather input data aggregation, and overestimation became more pronounced with increases in time step length. The findings have important implications for integrated assessments that couple crop models with other socioeconomic, environmental, or hydrologic models, and provide guidance for modelers involved in interdisciplinary agricultural and water resources applications, including policy assessments, evaluation of water and food security, and resource use and efficiency under climate change.

摘要

综合模型对于评估政策选择与社会经济、技术和环境过程之间的复杂相互作用和权衡至关重要。将基于过程的作物模型用作综合模型的组成部分,为这类分析提供了显著改进的可能性;然而,在模拟尺度和集成程度方面仍存在挑战。因此,本研究评估了在综合模型中使用较粗于每日的模拟时间步长来模拟长期作物产量的适用性,以及将聚合天气输入数据用于基于粮农组织 AquaCrop 模型的水分驱动型作物过程模型对产量的影响。我们在每日、半周和每周时间步长下运行模拟,并结合较粗的时间分辨率(每周)天气输入数据,代表了十年内四个地点的三种作物,以涵盖多种作物和生长环境。模拟结果与使用每日时间步长和每日天气数据的 AquaCrop 参考案例进行了比较。使用统计学方法评估了这四个假设农场中每个农场模拟作物生物量和产量以及水分需求的模型性能。还使用可视化表示法比较了模拟土壤湿度、作物冠层和实际蒸散量的值。无论使用哪种时间步长,每周气候数据都会导致作物生物量和产量的高估。在每日和半周时间步长下,实现了对作物产量和水分估算的高度一致和低偏差误差,而每周模拟则表现不佳。较长的时间步长加剧了天气输入数据聚合的影响,并且随着时间步长的增加,高估变得更加明显。这些发现对于将作物模型与其他社会经济、环境或水文模型耦合的综合评估具有重要意义,并为参与农业和水资源跨学科应用的建模人员(包括政策评估、水和粮食安全评估以及气候变化下资源利用和效率评估)提供了指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验