文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单核苷酸多态性特征预测局限性肾细胞癌复发的价值:一项回顾性分析和多中心验证研究。

Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study.

机构信息

Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.

Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China.

出版信息

Lancet Oncol. 2019 Apr;20(4):591-600. doi: 10.1016/S1470-2045(18)30932-X. Epub 2019 Mar 14.


DOI:10.1016/S1470-2045(18)30932-X
PMID:30880070
Abstract

BACKGROUND: Identification of high-risk localised renal cell carcinoma is key for the selection of patients for adjuvant treatment who are at truly higher risk of reccurrence. We developed a classifier based on single-nucleotide polymorphisms (SNPs) to improve the predictive accuracy for renal cell carcinoma recurrence and investigated whether intratumour heterogeneity affected the precision of the classifier. METHODS: In this retrospective analysis and multicentre validation study, we used paraffin-embedded specimens from the training set of 227 patients from Sun Yat-sen University (Guangzhou, Guangdong, China) with localised clear cell renal cell carcinoma to examine 44 potential recurrence-associated SNPs, which were identified by exploratory bioinformatics analyses of a genome-wide association study from The Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) dataset (n=114, 906 600 SNPs). We developed a six-SNP-based classifier by use of LASSO Cox regression, based on the association between SNP status and patients' recurrence-free survival. Intratumour heterogeneity was investigated from two other regions within the same tumours in the training set. The six-SNP-based classifier was validated in the internal testing set (n=226), the independent validation set (Chinese multicentre study; 428 patients treated between Jan 1, 2004 and Dec 31, 2012, at three hospitals in China), and TCGA set (441 retrospectively identified patients who underwent resection between 1998 and 2010 for localised clear cell renal cell carcinoma in the USA). The main outcome was recurrence-free survival; the secondary outcome was overall survival. FINDINGS: Although intratumour heterogeneity was found in 48 (23%) of 206 cases in the internal testing set with complete SNP information, the predictive accuracy of the six-SNP-based classifier was similar in the three different regions of the training set (areas under the curve [AUC] at 5 years: 0·749 [95% CI 0·660-0·826] in region 1, 0·734 [0·651-0·814] in region 2, and 0·736 [0·649-0·824] in region 3). The six-SNP-based classifier precisely predicted recurrence-free survival of patients in three validation sets (hazard ratio [HR] 5·32 [95% CI 2·81-10·07] in the internal testing set, 5·39 [3·38-8·59] in the independent validation set, and 4·62 [2·48-8·61] in the TCGA set; all p<0·0001), independently of patient age or sex and tumour stage, grade, or necrosis. The classifier and the clinicopathological risk factors (tumour stage, grade, and necrosis) were combined to construct a nomogram, which had a predictive accuracy significantly higher than that of each variable alone (AUC at 5 years 0·811 [95% CI 0·756-0·861]). INTERPRETATION: Our six-SNP-based classifier could be a practical and reliable predictor that can complement the existing staging system for prediction of localised renal cell carcinoma recurrence after surgery, which might enable physicians to make more informed treatment decisions about adjuvant therapy. Intratumour heterogeneity does not seem to hamper the accuracy of the six-SNP-based classifier as a reliable predictor of recurrence. The classifier has the potential to guide treatment decisions for patients at differing risks of recurrence. FUNDING: National Key Research and Development Program of China, National Natural Science Foundation of China, Guangdong Provincial Science and Technology Foundation of China, and Guangzhou Science and Technology Foundation of China.

摘要

背景:识别高危局限性肾细胞癌是选择真正有更高复发风险的辅助治疗患者的关键。我们开发了一种基于单核苷酸多态性(SNP)的分类器,以提高肾细胞癌复发的预测准确性,并研究了肿瘤内异质性是否影响分类器的精度。

方法:在这项回顾性分析和多中心验证研究中,我们使用来自中山大学(中国广州)局限性透明细胞肾细胞癌患者的 227 例患者的石蜡包埋标本,对 TCGA 肾透明细胞肾细胞癌(KIRC)数据集(n=114,906600 SNPs)的探索性生物信息学分析确定的 44 个潜在复发相关 SNP 进行了检查。我们使用 LASSO Cox 回归基于 SNP 状态与患者无复发生存之间的关联,开发了一个六 SNP 分类器。我们在同一肿瘤的另外两个区域内研究了肿瘤内异质性。该六 SNP 分类器在内部测试集(n=226)、独立验证集(中国多中心研究;2004 年 1 月 1 日至 2012 年 12 月 31 日在 3 家中国医院治疗的 428 例患者)和 TCGA 组(美国 1998 年至 2010 年接受局限性透明细胞肾细胞癌切除术的 441 例回顾性确定的患者)中进行了验证。主要结局是无复发生存率;次要结局是总生存率。

发现:尽管在内部测试集中,有 48 例(23%)患者的肿瘤内异质性完整 SNP 信息,但六 SNP 分类器的预测准确性在训练集中的三个不同区域相似(5 年 AUC:区域 1 为 0.749 [95%CI 0.660-0.826],区域 2 为 0.734 [0.651-0.814],区域 3 为 0.736 [0.649-0.824])。六 SNP 分类器准确预测了三个验证集患者的无复发生存率(内部测试集的 HR 5.32 [95%CI 2.81-10.07],独立验证集的 HR 5.39 [3.38-8.59],TCGA 组的 HR 4.62 [2.48-8.61];均 p<0.0001),与患者年龄或性别以及肿瘤分期、分级和坏死无关。该分类器和临床病理危险因素(肿瘤分期、分级和坏死)被组合构建了一个列线图,该列线图的预测准确性明显高于每个变量单独的预测准确性(5 年 AUC 为 0.811 [95%CI 0.756-0.861])。

解释:我们的六 SNP 分类器可以作为一种实用且可靠的预测因子,补充现有的手术治疗后局限性肾细胞癌复发的分期系统,这可能使医生能够更明智地做出辅助治疗的决策。肿瘤内异质性似乎并不影响六 SNP 分类器作为可靠的复发预测因子的准确性。该分类器有潜力指导不同复发风险患者的治疗决策。

资助:国家重点研发计划、国家自然科学基金、广东省自然科学基金和广州市科技基金。

相似文献

[1]
Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: a retrospective analysis and multicentre validation study.

Lancet Oncol. 2019-3-14

[2]
Multimodal recurrence scoring system for prediction of clear cell renal cell carcinoma outcome: a discovery and validation study.

Lancet Digit Health. 2023-8

[3]
Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study.

Lancet Oncol. 2018-2-7

[4]
Prognostic Value of a Long Non-coding RNA Signature in Localized Clear Cell Renal Cell Carcinoma.

Eur Urol. 2018-8-22

[5]
Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis.

Lancet Oncol. 2013-11-13

[6]
Development and verification of a nomogram for prediction of recurrence-free survival in clear cell renal cell carcinoma.

J Cell Mol Med. 2020-1

[7]
Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis.

Lancet Oncol. 2012-5-3

[8]
Single nucleotide polymorphisms and risk of recurrence of renal-cell carcinoma: a cohort study.

Lancet Oncol. 2012-12-7

[9]
Construction and validation of an autophagy-related long noncoding RNA signature for prognosis prediction in kidney renal clear cell carcinoma patients.

Cancer Med. 2021-4

[10]
A Multigene Signature Based on Cell Cycle Proliferation Improves Prediction of Mortality Within 5 Yr of Radical Nephrectomy for Renal Cell Carcinoma.

Eur Urol. 2017-12-14

引用本文的文献

[1]
Identification of kidney renal clear cell carcinoma prognosis based on gene expression and clinical information.

Front Mol Biosci. 2025-8-20

[2]
Five-year survival rate of kidney cancer (localized renal cell carcinoma) in the Asia: A systematic review and meta-analysis.

Medicine (Baltimore). 2025-8-22

[3]
Comparative Transcriptomics Study of Curcumin and Conventional Therapies in Translocation, Clear Cell, and Papillary Renal Cell Carcinoma Subtypes.

Int J Mol Sci. 2025-6-26

[4]
Development of a nomogram for predicting recurrence of epithelial ovarian cancer involving traditional Chinese medicine treatment.

Front Oncol. 2025-5-8

[5]
Immune-related genetic single-nucleotide polymorphisms contribute to prognosis and response to chemotherapy in patients with acute lymphoblastic leukemia.

Inflamm Res. 2025-4-29

[6]
Disulfidptosis, a novel regulated cell death to predict survival and therapeutic response in kidney renal clear cell carcinoma.

Discov Oncol. 2025-4-22

[7]
Retinoid X receptor γ predicts the prognosis and is associated with immune infiltration in kidney renal clear cell carcinoma: a qRT-PCR, TCGA and in silico research.

BMC Urol. 2025-3-28

[8]
SurvDB: Systematic Identification of Potential Prognostic Biomarkers in 33 Cancer Types.

Int J Mol Sci. 2025-3-20

[9]
Digital pathology and artificial intelligence in renal cell carcinoma focusing on feature extraction: a literature review.

Front Oncol. 2025-1-24

[10]
Efficient extraction via titanium organic frameworks facilitates in-depth profiling of urinary exosome metabolite fingerprints.

Anal Bioanal Chem. 2025-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索