Suppr超能文献

通过钛有机框架进行高效提取有助于深入分析尿液外泌体代谢物指纹图谱。

Efficient extraction via titanium organic frameworks facilitates in-depth profiling of urinary exosome metabolite fingerprints.

作者信息

Chen Yijie, Zhang Man, Qi Yu, Lin Yiwen, Liu Shasha, Deng Chunhui, Jiang Shuai, Sun Nianrong

机构信息

Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Department of Chemistry, Fudan University, Shanghai, 200433, China.

出版信息

Anal Bioanal Chem. 2025 Mar;417(8):1543-1555. doi: 10.1007/s00216-025-05741-2. Epub 2025 Jan 24.

Abstract

Urinary exosome metabolite analysis has demonstrated notable advantages in uncovering disease status, yet its potential in decoding the intricacies of clear cell renal cell carcinoma (ccRCC) remains untapped. To address this, a core-shell magnetic titanium organic framework was designed to capture urinary exosomes and assist laser desorption/ionization mass spectrometry (LDI MS) to decipher the exosomal metabolic profile of ccRCC, with high sensitivity, throughput, and speed. A total of 492 urinary exosome metabolite fingerprints (UEMFs) from 176 samples were extracted for exploring the differences between ccRCC and healthy individuals. Leveraging machine learning algorithms, the exosomal metabolic profile was disclosed, achieving accurate differentiation and prediction of ccRCC patients versus healthy individuals, with an accuracy exceeding 97.3%. Furthermore, an optimized algorithm panel comprising five key features demonstrated consistent and high diagnosing accuracy rates of over 94.0% both in the training and blind test sets for ccRCC, underscoring the remarkable effectiveness and superiority of this strategy in ccRCC detection. This study not only refines the LDI MS method for metabolite analysis in urinary exosomes but also introduces a promising technical approach for unraveling the mysteries of ccRCC.

摘要

尿液外泌体代谢物分析在揭示疾病状态方面已显示出显著优势,但其在解读透明细胞肾细胞癌(ccRCC)复杂情况方面的潜力仍未得到开发。为了解决这一问题,设计了一种核壳磁性钛有机框架来捕获尿液外泌体,并协助激光解吸/电离质谱(LDI MS)来破译ccRCC的外泌体代谢谱,具有高灵敏度、高通量和高速度。从176个样本中提取了总共492个尿液外泌体代谢物指纹(UEMF),以探索ccRCC患者与健康个体之间的差异。利用机器学习算法,揭示了外泌体代谢谱,实现了ccRCC患者与健康个体的准确区分和预测,准确率超过97.3%。此外,一个由五个关键特征组成的优化算法组在ccRCC的训练集和盲测集中均显示出一致且高的诊断准确率,超过94.0%,突出了该策略在ccRCC检测中的显著有效性和优越性。本研究不仅改进了尿液外泌体代谢物分析的LDI MS方法,还引入了一种有前景的技术方法来揭开ccRCC的奥秘。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验