Department of Industrial Engineering, University of Trento , Trento , Italy.
CeRiSM Research Centre, University of Verona , Rovereto , Trento , Italy.
Eur J Sport Sci. 2019 Oct;19(9):1221-1229. doi: 10.1080/17461391.2019.1587523. Epub 2019 Mar 18.
First and second ventilatory thresholds (VT and VT) represent the boundaries of the moderate-heavy and heavy-severe exercise intensity. Currently, VTs are primarily detected visually from cardiopulmonary exercise test (CPET) data, beginning with an initial data screening followed by data processing and statistical analysis. Automated VT detection is a challenging task owing to the high signal to noise ratio typical of CPET data. Recurrent neural networks describe a machine learning form of Artificial Intelligence that can be used to uncover complex non-linear relationships between input and output variables. Here we proposed detection of VTs using a single neural network classifier, trained with a database of 228 laboratory CPET data. We tested the neural network performance against the judgement of 7 couples of board-certified exercise-physiologists on 25 CPET tests. The neural network achieved expert-level performances across the tasks (mean absolute error was 9.5% ( = 0.79) and 4.2% ( = 0.94) for VT and VT, respectively). Estimation errors are compatible with the typical error of the current gold standard visual methodology. The neural network demonstrated VT detecting and exercise intensity level classifying at a high competence level. Neural networks could potentially be embedded in CPET hardware/software to extend the reach of exercise physiologists beyond their laboratories.
第一和第二通气阈(VT 和 VT)代表了中等强度和高强度运动的界限。目前,VT 主要通过心肺运动测试(CPET)数据进行视觉检测,首先进行初始数据筛选,然后进行数据处理和统计分析。由于 CPET 数据的信噪比通常较高,因此自动 VT 检测是一项具有挑战性的任务。递归神经网络描述了一种机器学习形式的人工智能,可用于揭示输入和输出变量之间的复杂非线性关系。在这里,我们使用单个神经网络分类器来检测 VT,该分类器使用 228 份实验室 CPET 数据的数据库进行训练。我们将神经网络的性能与 7 对认证运动生理学家对 25 次 CPET 测试的判断进行了比较。该神经网络在所有任务中都表现出了专家级的性能(VT 和 VT 的平均绝对误差分别为 9.5%( = 0.79)和 4.2%( = 0.94))。估计误差与当前金标准视觉方法的典型误差兼容。该神经网络表现出了高水平的 VT 检测和运动强度级别分类能力。神经网络有可能被嵌入 CPET 硬件/软件中,将运动生理学家的应用范围扩展到实验室之外。