Suppr超能文献

比较预测住院患者死亡率和住院时间的指标。

Comparison of Measures to Predict Mortality and Length of Stay in Hospitalized Patients.

机构信息

Jianfang Liu, PhD, is Assistant Professor, School of Nursing, Columbia University, New York, New York. Elaine Larson, RN, PhD, FAAN, CIC, is Associate Dean for Research and Anna C. Maxwell Professor of Nursing Research, School of Nursing, and Professor of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York. Amanda Hessels, PhD, MPH, RN, CIC, CPHQ, FAPIC, is Assistant Professor, School of Nursing, Columbia University, New York, New York, and Nurse Scientist, Hackensack Meridian Health, Neptune, New Jersey. Bevin Cohen, PhD, MPH, RN, is Associate Research Scientist, School of Nursing, Columbia University, New York, New York. Philip Zachariah, MD, MS, is Assistant Professor, Columbia University Medical Center & New York-Presbyterian Morgan Stanley Children's Hospital. David Caplan, BS, is Senior Technical Specialist, Division of Quality Analytics, New York-Presbyterian Hospital. Jingjing Shang, PhD, RN, is Associate Professor, School of Nursing, Columbia University, New York, New York.

出版信息

Nurs Res. 2019 May/Jun;68(3):200-209. doi: 10.1097/NNR.0000000000000350.

Abstract

BACKGROUND

Patient risk adjustment is critical for hospital benchmarking and allocation of healthcare resources. However, considerable heterogeneity exists among measures.

OBJECTIVES

The performance of five measures was compared to predict mortality and length of stay (LOS) in hospitalized adults using claims data; these include three comorbidity composite scores (Charlson/Deyo age-comorbidity score, V W Elixhauser comorbidity score, and V W Elixhauser age-comorbidity score), 3 M risk of mortality (3 M ROM), and 3 M severity of illness (3 M SOI) subclasses.

METHODS

Binary logistic and zero-truncated negative binomial regression models were applied to a 2-year retrospective dataset (2013-2014) with 123,641 adult inpatient admissions from a large hospital system in New York City.

RESULTS

All five measures demonstrated good to strong model fit for predicting in-hospital mortality, with C-statistics of 0.74 (95% confidence interval [CI] [0.74, 0.75]), 0.80 (95% CI [0.80, 0.81]), 0.81(95% CI [0.81, 0.82]), 0.94 (95% CI [0.93, 0.94]), and 0.90 (95% CI [0.90, 0.91]) for Charlson/Deyo age-comorbidity score, V W Elixhauser comorbidity score, V W Elixhauser age-comorbidity score, 3 M ROM, and 3 M SOI, respectively. The model fit statistics to predict hospital LOS measured by the likelihood ratio index were 0.3%, 1.2%, 1.1%, 6.2%, and 4.3%, respectively.

DISCUSSION

The measures tested in this study can guide nurse managers in the assignment of nursing care and coordination of needed patient services and administrators to effectively and efficiently support optimal nursing care.

摘要

背景

患者风险调整对于医院基准测试和医疗资源分配至关重要。然而,各种衡量标准之间存在很大的异质性。

目的

使用索赔数据比较五种衡量标准在预测住院成年人死亡率和住院时间(LOS)方面的表现;这些衡量标准包括三种合并症综合评分(Charlson/Deyo 年龄合并症评分、VW Elixhauser 合并症评分和 VW Elixhauser 年龄合并症评分)、3M 死亡率风险(3M ROM)和 3M 疾病严重程度(3M SOI)亚类。

方法

应用二元逻辑回归和零截断负二项回归模型对来自纽约市一家大型医院系统的 123641 名成年住院患者的 2 年回顾性数据集(2013-2014 年)进行分析。

结果

所有五种衡量标准在预测院内死亡率方面均表现出良好到较强的模型拟合度,C 统计量分别为 0.74(95%置信区间 [0.74, 0.75])、0.80(95%置信区间 [0.80, 0.81])、0.81(95%置信区间 [0.81, 0.82])、0.94(95%置信区间 [0.93, 0.94])和 0.90(95%置信区间 [0.90, 0.91]),用于 Charlson/Deyo 年龄合并症评分、VW Elixhauser 合并症评分、VW Elixhauser 年龄合并症评分、3M ROM 和 3M SOI。预测 LOS 的似然比指数模型拟合统计量分别为 0.3%、1.2%、1.1%、6.2%和 4.3%。

讨论

本研究测试的衡量标准可以指导护士长分配护理工作,并协调所需的患者服务,帮助管理人员有效地支持最佳护理。

相似文献

1
Comparison of Measures to Predict Mortality and Length of Stay in Hospitalized Patients.
Nurs Res. 2019 May/Jun;68(3):200-209. doi: 10.1097/NNR.0000000000000350.
2
The Elixhauser comorbidity method outperforms the Charlson index in predicting inpatient death after orthopaedic surgery.
Clin Orthop Relat Res. 2014 Sep;472(9):2878-86. doi: 10.1007/s11999-014-3686-7. Epub 2014 May 28.
3
Severity of Illness Measures for Pediatric Inpatients.
J Healthc Qual. 2018 Sep/Oct;40(5):e77-e89. doi: 10.1097/JHQ.0000000000000135.
5
Inpatient mortality after orthopaedic surgery.
Int Orthop. 2015 Jul;39(7):1307-14. doi: 10.1007/s00264-015-2702-1. Epub 2015 Feb 25.
6
Comparison of the Elixhauser and Charlson/Deyo methods of comorbidity measurement in administrative data.
Med Care. 2004 Apr;42(4):355-60. doi: 10.1097/01.mlr.0000118861.56848.ee.
7
Combining Charlson and Elixhauser scores with varying lookback predicated mortality better than using individual scores.
J Clin Epidemiol. 2021 Feb;130:32-41. doi: 10.1016/j.jclinepi.2020.09.020. Epub 2020 Sep 28.

引用本文的文献

1
Erratum: Characteristics and Comorbidities Influencing Mortality Risk Among Hereditary Angioedema Patients.
J Health Econ Outcomes Res. 2025 Aug 21;12(2):143450. doi: 10.36469/001c.143450. eCollection 2025.
2
Characteristics and Comorbidities Influencing Mortality Risk Among Hereditary Angioedema Patients.
J Health Econ Outcomes Res. 2025 Jul 17;12(2):11-20. doi: 10.36469/001c.141747. eCollection 2025.
3
Factors influencing the length of hospital stay of people experiencing homelessness.
Front Public Health. 2025 Mar 11;13:1545377. doi: 10.3389/fpubh.2025.1545377. eCollection 2025.
4
Virtual Home Care for Patients With Acute Illness.
JAMA Netw Open. 2024 Nov 4;7(11):e2447352. doi: 10.1001/jamanetworkopen.2024.47352.
5
Hospital length of stay prediction tools for all hospital admissions and general medicine populations: systematic review and meta-analysis.
Front Med (Lausanne). 2023 Aug 16;10:1192969. doi: 10.3389/fmed.2023.1192969. eCollection 2023.
6
Using machine-learning methods to predict in-hospital mortality through the Elixhauser index: A Medicare data analysis.
Res Nurs Health. 2023 Aug;46(4):411-424. doi: 10.1002/nur.22322. Epub 2023 May 23.
7
Predictivity of the comorbidity indices for geriatric syndromes.
BMC Geriatr. 2022 May 19;22(1):440. doi: 10.1186/s12877-022-03066-8.

本文引用的文献

1
Severity of Illness Measures for Pediatric Inpatients.
J Healthc Qual. 2018 Sep/Oct;40(5):e77-e89. doi: 10.1097/JHQ.0000000000000135.
2
Assessment of the charlson comorbidity index score, CHADS2 and CHA2DS2-VASc scores in predicting death in patients with thoracic empyema.
Heart Lung. 2018 Mar-Apr;47(2):157-161. doi: 10.1016/j.hrtlng.2017.12.003. Epub 2018 Jan 19.
3
Risk adjusted mortality after hip replacement surgery: a retrospective study.
Ann Ist Super Sanita. 2017 Jan-Mar;53(1):40-45. doi: 10.4415/ANN_17_01_09.
5
Challenges Associated With Using Large Data Sets for Quality Assessment and Research in Clinical Settings.
Policy Polit Nurs Pract. 2015 Aug;16(3-4):117-24. doi: 10.1177/1527154415603358. Epub 2015 Sep 8.
7
A new Elixhauser-based comorbidity summary measure to predict in-hospital mortality.
Med Care. 2015 Apr;53(4):374-9. doi: 10.1097/MLR.0000000000000326.
9
Effect of Present-on-Admission (POA) Reporting Accuracy on Hospital Performance Assessments Using Risk-Adjusted Mortality.
Health Serv Res. 2015 Jun;50(3):922-38. doi: 10.1111/1475-6773.12239. Epub 2014 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验