Tang Tsung-Yeh, Zhou Yilong, Arya Gaurav
Department of NanoEngineering , University of California, San Diego , La Jolla , California 92093 , United States.
Department of Mechanical Engineering and Materials Science , Duke University , Durham , North Carolina 27708 , United States.
ACS Nano. 2019 Apr 23;13(4):4111-4123. doi: 10.1021/acsnano.8b08733. Epub 2019 Mar 25.
We propose a strategy for assembling spherical nanoparticles (NPs) into anisotropic architectures in a polymer matrix. The approach takes advantage of the interfacial tension between two mutually immiscible polymers forming a bilayer and differences in the compatibility of the two polymer layers with polymer grafts on particles to trap NPs within two-dimensional planes parallel to the interface. The ability to precisely tune the location of the entrapment planes via the NP grafting density, and to trap multiple interacting particles within distinct planes, can then be used to assemble NPs into unconventional arrangements near the interface. We carry out molecular dynamics simulations of polymer-grafted NPs in a polymer bilayer to demonstrate the viability of the proposed approach in both trapping NPs at tunable distances from the interface and assembling them into a variety of unusual nanostructures. We illustrate the assembly of NP clusters, such as dimers with tunable tilt relative to the interface and trimers with tunable bending angle, as well as anisotropic macroscopic phases, including serpentine and branched structures, ridged hexagonal monolayers, and square-ordered bilayers. We also develop a theoretical model to predict the preferred positions and free energies of NPs trapped at or near the interface that could help guide the design of polymer-grafted NPs for achieving target NP architectures. Overall, this work suggests that interfacial assembly of NPs could be a promising approach for fabricating next-generation polymer nanocomposites with potential applications in plasmonics, electronics, optics, and catalysis where precise arrangement of polymer-embedded NPs is required for function.
我们提出了一种在聚合物基质中将球形纳米粒子(NPs)组装成各向异性结构的策略。该方法利用了形成双层的两种互不相溶聚合物之间的界面张力,以及这两种聚合物层与粒子上聚合物接枝物的相容性差异,将纳米粒子捕获在平行于界面的二维平面内。通过纳米粒子接枝密度精确调节捕获平面的位置,以及在不同平面内捕获多个相互作用粒子的能力,随后可用于在界面附近将纳米粒子组装成非常规排列。我们对聚合物双层中接枝聚合物的纳米粒子进行了分子动力学模拟,以证明所提出方法在将纳米粒子捕获在距界面可调距离处并将它们组装成各种不寻常纳米结构方面的可行性。我们展示了纳米粒子簇的组装,例如相对于界面具有可调倾斜度的二聚体和具有可调弯曲角度的三聚体,以及各向异性宏观相,包括蛇形和分支结构、脊状六边形单层和方形有序双层。我们还开发了一个理论模型来预测捕获在界面处或附近的纳米粒子的优选位置和自由能,这有助于指导接枝聚合物的纳米粒子设计,以实现目标纳米粒子结构。总的来说,这项工作表明,纳米粒子的界面组装可能是一种很有前景的方法,用于制造下一代聚合物纳米复合材料,在等离子体学、电子学、光学和催化等领域有潜在应用,这些领域中聚合物嵌入纳米粒子的精确排列是实现功能所必需的。