Suppr超能文献

使用三维粒子跟踪测速技术评估HeartMate 3中的流场并与计算流体动力学进行比较。

Assessment of the Flow Field in the HeartMate 3 Using Three-Dimensional Particle Tracking Velocimetry and Comparison to Computational Fluid Dynamics.

作者信息

Thamsen Bente, Gülan Utku, Wiegmann Lena, Loosli Christian, Schmid Daners Marianne, Kurtcuoglu Vartan, Holzner Markus, Meboldt Mirko

机构信息

From the Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.

Pediatric Heart Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.

出版信息

ASAIO J. 2020 Feb;66(2):173-182. doi: 10.1097/MAT.0000000000000987.

Abstract

Flow fields in rotary blood pumps (RBPs) have a significant influence on hemocompatibility. Because flow characteristics vary with flow rate, different operating conditions play a role. Furthermore, turbulence is crucial in the evaluation of blood damage potential, but the level of turbulence in implantable RBPs is still unknown. In this study, we addressed both research aspects and for the first time measured turbulent flow fields in the HeartMate 3 (HM3) at different operating flows. The averaged, three-dimensional velocity field including fluctuating velocity components in a HM3 with a transparent lower housing was measured using three-dimensional particle tracking velocimetry (3D-PTV). In vitro results were compared with computational fluid dynamic (CFD) simulations for two flow cases, representing the lower and upper physiologic flow range (2.7 and 5.7 L/min), using two different turbulence models that account for fluctuating velocity fields: the k-ω shear stress transport and the Reynolds stress model (RSM). The measurements revealed higher mean and turbulent kinetic energies (TKEs) for the low-flow condition especially within the gap beneath the impeller. Computed mean fields agree well with 3D-PTV for both models, but the RSM predicts the TKE levels better than the k-ω model. Computational fluid dynamic results further show wall shear stresses higher than 150 Pa, a commonly used damage threshold, in the bottom gap for the lower flow condition. In conclusion, the low-flow condition was found to be more prone to blood damage. Furthermore, CFD predictions for turbulence must be carefully experimentally validated.

摘要

旋转式血泵(RBPs)中的流场对血液相容性有重大影响。由于流动特性随流速变化,不同的运行条件会发挥作用。此外,湍流在评估血液损伤可能性方面至关重要,但植入式RBPs中的湍流水平仍然未知。在本研究中,我们探讨了这两个研究方面,并首次测量了HeartMate 3(HM3)在不同运行流量下的湍流场。使用三维粒子跟踪测速技术(3D-PTV)测量了具有透明下部外壳的HM3中的平均三维速度场,包括脉动速度分量。针对代表生理流量范围下限和上限(2.7和5.7 L/min)的两种流动情况,使用考虑脉动速度场的两种不同湍流模型,将体外结果与计算流体动力学(CFD)模拟进行了比较:k-ω剪切应力输运模型和雷诺应力模型(RSM)。测量结果显示,低流量条件下的平均动能和湍流动能(TKEs)更高,尤其是在叶轮下方的间隙内。两种模型的计算平均场与3D-PTV结果吻合良好,但RSM对TKE水平的预测比k-ω模型更好。CFD结果进一步表明,在低流量条件下,底部间隙处的壁面剪应力高于常用的损伤阈值150 Pa。总之,发现低流量条件更容易导致血液损伤。此外,必须通过实验仔细验证CFD对湍流的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验