Suppr超能文献

临床心室辅助装置的流体动力学数值模型的比较和实验验证。

Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device.

机构信息

Artificial Organs Laboratory, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA.

出版信息

Artif Organs. 2013 Apr;37(4):380-9. doi: 10.1111/j.1525-1594.2012.01576.x. Epub 2013 Feb 27.

Abstract

With the recent advances in computer technology, computational fluid dynamics (CFDs) has become an important tool to design and improve blood-contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST [Menter's Shear Stress Transport], and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, the CentriMag centrifugal blood pump. In parallel, a transparent replica of the CentriMag pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε renormalization group theory models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than the laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended.

摘要

随着计算机技术的最新进展,计算流体动力学(CFD)已成为设计和改进与血液接触的人工器官以及研究器械诱导的血液损伤的重要工具。商业 CFD 软件包随时可用,并且 CFD 软件开发商提供了多种 CFD 模型。然而,有效地利用 CFD 来描述血流并预测这些医疗器械中的血液损伤的最佳方法仍存在争议。本研究旨在比较这些 CFD 模型,并提供有关每种模型在模拟循环辅助设备中血流方面的准确性的有用信息。层流和五种湍流模型(Spalart-Allmaras、k-ε(k-epsilon)、k-ω(k-omega)、SST[Menter 的剪切应力传输]和雷诺应力)被用于预测一种临床上使用的循环辅助装置,即 CentriMag 离心泵的血流。同时,构建了 CentriMag 泵的透明复制品,并使用数字粒子图像测速法(DPIV)测量了流场的选定视图。CFD 结果与 DPIV 实验结果进行了比较。与实验相比,除了出口区域外,所有选定的 CFD 模型都相当准确地预测了流动模式。然而,从定量的角度来看,层流模型的结果与实验数据的偏差最大。另一方面,k-ε 重整化群理论模型和雷诺应力模型最为准确。总之,对于循环辅助装置,湍流模型比层流模型提供更准确的结果。在所选择的湍流模型中,推荐使用 k-ε 和雷诺应力法模型。

相似文献

1
Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device.
Artif Organs. 2013 Apr;37(4):380-9. doi: 10.1111/j.1525-1594.2012.01576.x. Epub 2013 Feb 27.
2
Validation of numerically simulated ventricular flow patterns during left ventricular assist device support.
Int J Artif Organs. 2021 Jan;44(1):30-38. doi: 10.1177/0391398820904056. Epub 2020 Feb 5.
4
Numerical Analyses for Low Reynolds Flow in a Ventricular Assist Device.
Artif Organs. 2017 Jun;41(6):E30-E40. doi: 10.1111/aor.12776. Epub 2016 Nov 8.
5
On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers.
Indoor Air. 2013 Jun;23(3):236-49. doi: 10.1111/ina.12010. Epub 2012 Nov 29.
6
Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
Cardiovasc Eng Technol. 2018 Dec;9(4):623-640. doi: 10.1007/s13239-018-00378-y. Epub 2018 Oct 5.
7
Assessment of turbulence models for pulsatile flow inside a heart pump.
Comput Methods Biomech Biomed Engin. 2016 Feb;19(3):271-285. doi: 10.1080/10255842.2015.1015527. Epub 2015 Mar 27.
8
Studies of turbulence models in a computational fluid dynamics model of a blood pump.
Artif Organs. 2003 Oct;27(10):935-7. doi: 10.1046/j.1525-1594.2003.00025.x.
9
Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
Artif Organs. 2020 Jul;44(7):E263-E276. doi: 10.1111/aor.13643. Epub 2020 Feb 16.

引用本文的文献

1
Linking Computational Fluid Dynamics Modeling to Device-Induced Platelet Defects in Mechanically Assisted Circulation.
ASAIO J. 2024 Dec 1;70(12):1085-1093. doi: 10.1097/MAT.0000000000002242. Epub 2024 May 19.
2
Computational fluid dynamics-based design and in vitro characterization of a novel pediatric pump-lung.
Artif Organs. 2024 Feb;48(2):130-140. doi: 10.1111/aor.14665. Epub 2023 Oct 20.
5
CT-Based Analysis of Left Ventricular Hemodynamics Using Statistical Shape Modeling and Computational Fluid Dynamics.
Front Cardiovasc Med. 2022 Jul 5;9:901902. doi: 10.3389/fcvm.2022.901902. eCollection 2022.
6
7
Equivalent Scalar Stress Formulation Taking into Account Non-Resolved Turbulent Scales.
Cardiovasc Eng Technol. 2021 Jun;12(3):251-272. doi: 10.1007/s13239-021-00526-x. Epub 2021 Mar 5.
8
9
Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps.
Int J Artif Organs. 2020 Oct;43(10):653-662. doi: 10.1177/0391398820903734. Epub 2020 Feb 11.
10
Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
Artif Organs. 2020 Aug;44(8):E348-E368. doi: 10.1111/aor.13663. Epub 2020 Mar 5.

本文引用的文献

1
Deaths: preliminary data for 2009.
Natl Vital Stat Rep. 2011 Mar;59(4):1-51.
3
Heart disease and stroke statistics--2012 update: a report from the American Heart Association.
Circulation. 2012 Jan 3;125(1):e2-e220. doi: 10.1161/CIR.0b013e31823ac046. Epub 2011 Dec 15.
5
Design of a centrifugal blood pump: Heart Turcica Centrifugal.
Artif Organs. 2011 Jul;35(7):720-5. doi: 10.1111/j.1525-1594.2010.01167.x. Epub 2011 Mar 1.
6
The use of computational fluid dynamics in the development of ventricular assist devices.
Med Eng Phys. 2011 Apr;33(3):263-80. doi: 10.1016/j.medengphy.2010.10.014. Epub 2010 Nov 13.
7
Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support.
Artif Organs. 2010 Dec;34(12):1099-113. doi: 10.1111/j.1525-1594.2010.01017.x.
8
Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.
Artif Organs. 2010 Mar;34(3):185-92. doi: 10.1111/j.1525-1594.2009.00799.x.
10
A passively suspended Tesla pump left ventricular assist device.
ASAIO J. 2009 Nov-Dec;55(6):556-61. doi: 10.1097/MAT.0b013e3181bae73e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验