Suppr超能文献

结直肠腺癌肿瘤起源细胞球中存在 KRAS 基因突变可加速亲本肿瘤的体外生长。

KRAS mutations in the parental tumour accelerate in vitro growth of tumoroids established from colorectal adenocarcinoma.

机构信息

Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

2cureX, Birkeroed, Denmark.

出版信息

Int J Exp Pathol. 2019 Feb;100(1):12-18. doi: 10.1111/iep.12308. Epub 2019 Mar 18.

Abstract

The aim of the present study was to characterize a patient-derived in vitro 3D model (ie tumoroid) established from colorectal adenocarcinoma. This study investigated the growth rate of tumoroids and whether the Kirsten rat sarcoma (KRAS) mutations in the parental tumour accelerate this rate. The tumoroids were established from surgical resections of primary and metastatic colorectal adenocarcinoma from 26 patients. The in vitro growth rate of these tumoroids was monitored by automated imaging and recorded as relative growth rate. The KRAS hotspot mutations were investigated on the parental tumours by Ion Torrent next-generation sequencing. The KRAS mutations were detected in 58% of the parental tumours, and a significantly higher growth rate was observed for tumoroids established from the KRAS-mutated tumours compared to wild-type tumours (P < 0.0001). The average relative growth rate (log10) on day 10 was 0.360 ± 0.180 (mean ± SD) for the KRAS-mutated group and 0.098 ± 0.135 (mean ± SD) for the KRAS wild-type group. These results showed that the presence of KRAS mutations in parental tumours is associated with an acceleration of the growth rate of tumoroids. The future perspective for such a model could be the implementation of chemoassays for personalized medicine.

摘要

本研究旨在对源自结直肠腺癌的体外 3D 模型(即类器官)进行特征描述。本研究调查了类器官的生长速度,以及亲本肿瘤中的 Kirsten 大鼠肉瘤(KRAS)突变是否会加速这一速度。类器官是从 26 名患者的原发性和转移性结直肠腺癌的手术切除物中建立的。通过自动成像监测这些类器官的体外生长速度,并记录为相对生长率。通过 Ion Torrent 下一代测序调查亲本肿瘤中的 KRAS 热点突变。KRAS 突变在 58%的亲本肿瘤中被检测到,与野生型肿瘤相比,源自 KRAS 突变型肿瘤的类器官生长速度明显更快(P < 0.0001)。KRAS 突变组第 10 天的平均相对生长率(log10)为 0.360 ± 0.180(均值 ± 标准差),KRAS 野生型组为 0.098 ± 0.135(均值 ± 标准差)。这些结果表明,亲本肿瘤中 KRAS 突变的存在与类器官生长速度的加速有关。此类模型的未来前景可能是为个体化医学实施化疗测定。

相似文献

1
KRAS mutations in the parental tumour accelerate in vitro growth of tumoroids established from colorectal adenocarcinoma.
Int J Exp Pathol. 2019 Feb;100(1):12-18. doi: 10.1111/iep.12308. Epub 2019 Mar 18.
2
Characterization of in vitro 3D cultures.
APMIS. 2021 Aug;129 Suppl 142:1-30. doi: 10.1111/apm.13168.
4
KRAS and BRAF mutation analysis can be reliably performed on aspirated cytological specimens of metastatic colorectal carcinoma.
Cytopathology. 2011 Dec;22(6):358-64. doi: 10.1111/j.1365-2303.2010.00812.x. Epub 2010 Oct 4.
5
Panel gene profiling of small bowel adenocarcinoma: Results from the NADEGE prospective cohort.
Int J Cancer. 2021 Apr 1;148(7):1731-1742. doi: 10.1002/ijc.33392. Epub 2021 Jan 4.
6
KRAS and PIK3CA mutations in colorectal adenocarcinomas correlate with aggressive histological features and behavior.
Hum Pathol. 2017 Jul;65:21-30. doi: 10.1016/j.humpath.2017.01.010. Epub 2017 Feb 8.
7
Detection of KRAS mutations in circulating tumor cells from patients with metastatic colorectal cancer.
Cancer Biol Ther. 2015;16(9):1289-95. doi: 10.1080/15384047.2015.1070991. Epub 2015 Aug 7.
10
KRAS mutant allele-specific imbalance (MASI) assessment in routine samples of patients with metastatic colorectal cancer.
J Clin Pathol. 2015 Apr;68(4):265-9. doi: 10.1136/jclinpath-2014-202761. Epub 2015 Jan 21.

引用本文的文献

3
Organoids in Translational Oncology.
J Clin Med. 2020 Aug 27;9(9):2774. doi: 10.3390/jcm9092774.
4
Comparative Molecular Analysis of Cancer Behavior Cultured In Vitro, In Vivo, and Ex Vivo.
Cancers (Basel). 2020 Mar 14;12(3):690. doi: 10.3390/cancers12030690.
6
Addressing Patient Specificity in the Engineering of Tumor Models.
Front Bioeng Biotechnol. 2019 Sep 12;7:217. doi: 10.3389/fbioe.2019.00217. eCollection 2019.

本文引用的文献

1
Patient-derived organoids model treatment response of metastatic gastrointestinal cancers.
Science. 2018 Feb 23;359(6378):920-926. doi: 10.1126/science.aao2774.
2
Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine.
PLoS One. 2017 Sep 6;12(9):e0183074. doi: 10.1371/journal.pone.0183074. eCollection 2017.
4
Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer.
Int J Mol Sci. 2017 Jan 19;18(1):197. doi: 10.3390/ijms18010197.
5
Key roles of EMT for adaptive resistance to MEK inhibitor in KRAS mutant lung cancer.
Small GTPases. 2017 Jul 3;8(3):172-176. doi: 10.1080/21541248.2016.1210369. Epub 2016 Jul 8.
6
Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells.
Oncogene. 2016 Jul 21;35(29):3880-6. doi: 10.1038/onc.2015.437. Epub 2015 Nov 23.
7
Mechanisms of resistance to EGFR tyrosine kinase inhibitors.
Acta Pharm Sin B. 2015 Sep;5(5):390-401. doi: 10.1016/j.apsb.2015.07.001. Epub 2015 Jul 26.
8
Clinical Validation of Targeted Next Generation Sequencing for Colon and Lung Cancers.
PLoS One. 2015 Sep 14;10(9):e0138245. doi: 10.1371/journal.pone.0138245. eCollection 2015.
9
Colorectal cancer-derived tumor spheroids retain the characteristics of original tumors.
Cancer Lett. 2015 Oct 10;367(1):34-42. doi: 10.1016/j.canlet.2015.06.024. Epub 2015 Jul 13.
10
Prospective derivation of a living organoid biobank of colorectal cancer patients.
Cell. 2015 May 7;161(4):933-45. doi: 10.1016/j.cell.2015.03.053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验