Galmés Bartomeu, Martínez Daniel, Infante-Carrió Maria F, Franconetti Antonio, Frontera Antonio
Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), SPAIN.
Chemphyschem. 2019 May 3;20(9):1135-1144. doi: 10.1002/cphc.201900142. Epub 2019 Apr 10.
This article analyzes the interplay between nitro's π-hole and halogen-bonding (XB) interactions in nitroarenes. Remarkable cooperativity effects are observed when π-hole and XB interactions coexist in the same complex. The nitroarene presents two π-holes, one approximately over the N atom of the nitro group and the other over the aromatic ring, being the former more positive. The interplay between both interactions has been analyzed in terms of energetic and geometric features of the complexes, which are computed at the RI-MP2/def2-TZVPD level of theory. Molecular electrostatic potential (MEP) surface calculations have been used to explore the variation of the MEP values at the π-hole upon the formation of halogen bonding interactions between the nitroarene and CF X (X=Cl, Br and I) molecules. In addition, the Bader's theory of atoms in molecules" (AIM) is used to characterize the interactions by means of the distribution of bond critical points and bond paths and to analyze their strengthening or weakening depending upon the variation of charge density at critical points. The aforementioned computational methods are adequate to examine how these interactions mutually influence each other. Natural bond orbital (NBO) and noncovalent interaction plot (NCIPlot) computational tools have been also used in some representative complexes to further analyze cooperativity effects. Finally, the Cambridge Structural Database (CSD) is used to provide some experimental evidence.
本文分析了硝基芳烃中硝基的π-空穴与卤键(XB)相互作用之间的相互影响。当π-空穴和XB相互作用共存于同一配合物中时,可观察到显著的协同效应。硝基芳烃有两个π-空穴,一个大致位于硝基的N原子上方,另一个位于芳环上方,前者的正电性更强。已根据配合物的能量和几何特征分析了这两种相互作用之间的相互影响,这些特征是在RI-MP2/def2-TZVPD理论水平上计算得出的。分子静电势(MEP)表面计算已用于探索在硝基芳烃与CFX(X = Cl、Br和I)分子之间形成卤键相互作用时,π-空穴处MEP值的变化。此外,“分子中的原子”(AIM)的巴德理论用于通过键临界点和键路径的分布来表征相互作用,并根据临界点处电荷密度的变化分析其增强或减弱情况。上述计算方法足以检验这些相互作用如何相互影响。自然键轨道(NBO)和非共价相互作用图(NCIPlot)计算工具也已用于一些具有代表性的配合物中,以进一步分析协同效应。最后,剑桥结构数据库(CSD)用于提供一些实验证据。