Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Chemosphere. 2019 Jun;225:329-341. doi: 10.1016/j.chemosphere.2019.03.028. Epub 2019 Mar 8.
Selenium (Se) is a prerequisite metalloid for humans and animals. But, its essentialness or phytotoxicity is still obscure. Here, we investigated the dual effects of sodium selenite (0, 25, 50 or 100 μM) on the physio-biochemical, anatomical and molecular alterations in different Brassicca napus L. cultivars (viz. Zheda 619, Zheda 622, ZY 50, and ZS 758). Findings revealed that Se-supplementation markedly boosted the plant growth and biomasses by improving mineral uptake, water-soluble protein, sugar, photosynthetic efficiency regarding the pigments and gas exchange parameters. Higher Se-levels impaired the photosynthetic efficiency, deplete nutrients-uptake, osmotic stress by proline accumulation and higher Se-accumulation in roots led to growth and biomass reduction. Se-supplementation minimized the accumulation of ROS (hydrogen peroxide, superoxide radical), malondialdehyde and methylglyoxal (MG) levels by activating the enzymes engaged in AsA-GSH cycle and ROS-MG detoxification. But, elevated-Se impaired the oxidative metabolism by desynchronizing the antioxidants as revealed by decreasing levels of ascorbic acid, activities and expression levels of catalase, glutathione reductase, and dehydro-ascorbate reductase. Up-regulation of secondary metabolites genes (PAL, PPO) revealed the role of Se in regulating transcriptional networks involved in oxidative stress. The damages in leaf and root ultra-structures disclosed the Se-phytotoxicity. Together, outcomes uncovered the protective mechanism of Se (till 25 μM) by reinforcing the plant morphology, photosynthesis, osmo-protection, redox balance, enzyme activities for ROS-MG detoxification by reducing ROS and MG components. Excessive-Se prompt phytotoxicity by impairing above mentioned parameters, especially at 100 μM Se. Among all B. napus cultivars, Zheda 622 was discovered as highly-susceptible and ZS 758 showed greatest-tolerance against Se stress.
硒(Se)是人类和动物必需的类金属元素。但是,其必要性或植物毒性仍然不清楚。在这里,我们研究了亚硒酸钠(0、25、50 或 100μM)对不同甘蓝型油菜(即浙 619、浙 622、ZY50 和 ZS758)生理生化、解剖和分子变化的双重影响。研究结果表明,硒的补充通过提高矿质元素的吸收、水溶性蛋白质、糖、色素和气体交换参数来显著促进植物的生长和生物量。更高的硒水平会损害光合作用效率,耗尽养分吸收,通过脯氨酸积累导致渗透胁迫,以及根中更高的硒积累导致生长和生物量减少。硒的补充通过激活参与抗坏血酸-谷胱甘肽循环和 ROS-MG 解毒的酶,最小化了活性氧(过氧化氢、超氧自由基)、丙二醛和甲基乙二醛(MG)水平的积累。然而,高硒通过使抗氧化剂失同步,降低抗坏血酸水平、过氧化氢酶、谷胱甘肽还原酶和脱氢抗坏血酸还原酶的活性和表达水平,损害了氧化代谢。次生代谢物基因(PAL、PPO)的上调表明硒在调节参与氧化应激的转录网络中的作用。叶片和根超微结构的损伤揭示了硒的植物毒性。总的来说,研究结果揭示了硒(直至 25μM)通过增强植物形态、光合作用、渗透保护、氧化还原平衡、ROS-MG 解毒酶活性来减轻 ROS 和 MG 成分,从而发挥保护机制。过量的硒会通过损害上述参数导致植物毒性,尤其是在 100μM Se 时。在所有甘蓝型油菜品种中,浙 622 被发现对硒胁迫高度敏感,而 ZS758 对硒胁迫表现出最大的耐受性。