School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing 100083, PR China.
School of Information Science and Engineering, Lanzhou University, Lanzhou 731100, PR China.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Jun 5;216:136-145. doi: 10.1016/j.saa.2019.03.024. Epub 2019 Mar 11.
In this paper, we report nanophotonic properties of single layer graphene with Zigzag and/or armchair edge in the region of Mid Infrared (Mid-IR). The photoinduced charge transfer of graphene can occur in electronic state transition of Mid-IR region, and then the transferred electrons can interact with the phonon of graphene at Mid-IR. The coupling excitation of photon and phonon (graphene plasmon) can results in photon-electron-phonon interactions, which can significantly enhance resonance Raman scattering of Mid-IR region, which is so called "graphene plasmon-enhanced resonance Raman scattering of Mid-IR region". The photoinduced charge transfers are strongly dependent on the kinds of edge structures of Zigzag and/or armchair, which are revealed by charge difference density. It is found that the edge structures of Zigzag and/or armchair play the most important role on the orientation of charge transfer. The analysis of molecular orbital Pipek-Mezey localization reveals the nature of edge structure on the occurrence or not photoinduced charge transfer. Our results can promote deeper understanding nanophotonic mechanism of Mid Infrared graphene and can be potentially used in the design of optical device based on Mid Infrared graphene.
在本文中,我们报道了在中红外(Mid-IR)区域中单层石墨烯的 Zigzag 和/或 armchair 边缘的纳米光子特性。石墨烯的光致电荷转移可以发生在 Mid-IR 区域的电子状态跃迁中,然后转移的电子可以在 Mid-IR 与石墨烯的声子相互作用。光子和声子(石墨烯等离子体)的耦合激发可以导致光子-电子-声子相互作用,这可以显著增强 Mid-IR 区域的共振拉曼散射,这就是所谓的“中红外区域的石墨烯等离子体增强共振拉曼散射”。光致电荷转移强烈依赖于 Zigzag 和/或 armchair 的边缘结构种类,这可以通过电荷差分密度来揭示。研究发现,Zigzag 和/或 armchair 的边缘结构对电荷转移的方向起着最重要的作用。分子轨道 Pipek-Mezey 局域化的分析揭示了边缘结构在光致电荷转移发生与否方面的性质。我们的研究结果可以促进对 Mid Infrared 石墨烯纳米光子机制的更深入理解,并有望应用于基于 Mid Infrared 石墨烯的光电器件设计。